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1. INTRODUCTION 

he convolutional neural network (CNN) is 

an architecture for deep learning taken from 

the visual system structure. It was found by 

Hubel and Wiesel in 1962 during their work on the 

cat’s primary visual cortex. The cells in the cortex 

are sensitive to small sub-regions of the visual field 

called receptive fields (Hubel and Wiesel, 1962). 

Detecting light in the receptive fields is done by 

these cells. Fukushima, 1980, proposed 

Neocognitron, inspired from the works of Hubel 

and Wiesel, which is the earliest model that had a 

computer simulatability. This Neocognitron is 

counted as the prototype of CNNs, and it was 

grounded on the neurons’ hierarchical organization 

for the conversion of an image. The outline of 

CNNs was founded by LeCun et al., 1990, and 

LeCun et al., 1998, by evolving an artificial neural 

network with a multilayer called LeNet-5. This 

artificial neural network was used to perform 

handwritten digit classification and it was trainable 

by the backpropagation algorithm (Hecht-Nielsen, 

1988). Training with this algorithm made it feasible 

to recognize patterns from raw pixels. Although 

LeNet-5 has many advantages, it was unsuccessful 

when used in solving complex problems such as 

video classification. 

T 

A B S T R A C T 

At present, deep learning is widely used in a broad range of arenas. A convolutional neural 
networks (CNN) is becoming the star of deep learning as it gives the best and most precise results 
when cracking real-world problems. In this work, a brief description of the applications of CNNs 
in two areas will be presented: First, in computer vision, generally, that is, scene labeling, face 
recognition, action recognition, and image classification; Second, in natural language processing, 
that is, the fields of speech recognition and text classification.  
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CNN has been taken into a whole new level since 

the initiation of general-purpose graphics 

processing unit GPGPUs and their usage in 

machine learning (Steinkraus et al., 2005). More 

effective techniques have been designed to train 

CNNs using GPU computing (Bengio et al., 2007; 

Chellapilla et al., 2006). A new design for CNNs 

was presented by Krizhevsky et al. 2012, named 

AlexNet that showed great enhancement in image 

classification. This design is close to the classic 

LeNet-5; however, it had a deeper structure. After 

the success of AlexNet, more versions were 

developed that demonstrated performance 

enhancement, versions such as GoogleNet 

(Szegedy et al., 2015), VGGNet (Simonyan and 

Zisserman, 2014), and ZFNet (Zeiler and Fergus, 

2014) and ResNet (He et al., 2016).  

Another version of neural networks is recurrent 

neural networks (RNNs) that are used for natural 

language processing (NLP) as it simulates the 

ability of humans to process language (Graves et 

al., 2013). However, lately, CNNs have been used 

in solving NLP problems such as sentiment 

analysis, spam detection, or topic categorization. 

Even though it is less natural when it comes to 

processing such problems, it has accomplished a 

competitive outcome. In addition, CNNs have been 

used for the problems of speech recognition. 

Speech is an ethereal illustration of verbal words 

that includes hundreds of variables and usually 

encounters issues of overfitting when trained using 

fully connected feed-forward networks (LeCun and 

Bengio, 1995). In addition, they do not contain 

integrated invariance with regard to interpretations. 

Shift variance is obtained automatically in CNNs, 

and the CNN forces the extraction of local with 

regard to classical architecture.  

In this work, the evolvement of CNNs in computer 

vision and NLP fields will be demonstrated. The 

CNN design will be presented. Then, the 

applications of CNNs will be explored. 

2. CNN ARCHITECTURE 

The architecture of the CNNs is different from the 

traditional multilayer perceptron (MLP). This is to 

guarantee a certain degree of shift and distortion 

invariance (LeCun and Bengio, 1995). To do so, 

three design ideas are merged, which are, local 

receptive fields, common weights, and spatial and 

temporal subsampling. 

Several designs of CNNs have been stated in the 

introduction; however, in their basic components, 

they are very similar. In Figure 1, the architecture 

of a CNN is shown (LeCun et al., 1990). 

CNNs consist of multiple trainable multilayer 

levels (LeCun et al., 1990). Feature maps are sets of 

arrays that represent, for each level, the input and 

output (LeCun et al., 1998). If the input is a colored 

image, every feature map will be a two-dimensional 

array that holds a color channel of the inputted 

image, for videos it is a three-dimensional array and 

it is a one-dimensional array for audio input. From 

every location in the input, features will be exported 

and presented as an output in the output level.  

Generally, every level contains the following: First, 

a non-linearity layer. Second, a filter bank layer and 

finally, a feature pooling layer. After several 

convolution and pooling layers, single or multiple 

fully connected layers will be present. 

 

 
Figure 1. CNN architecture (Bhandare et al., 2016)
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2.1. Convolution Layer  
The core layer of CNNs is the convolutional layer. 

The parameters of the layer consist of learnable 

kernels or filters that spread through the input’s full 

depth. The preceding layer consists of a set of 

elements grouped in a tiny neighborhood that send 

inputs to this layer. In the preceding layer, this 

neighborhood is known as the neuron’s receptive 

field. When moving through each filter, the value is 

convolved with an input; this procedure will 

generate a map. When many feature maps that are 

produced by multiple filters get stacked together, 

they formulate the output of the convolution layer. 

The model complexity is minimized by sharing the 

weight vector that produces the feature map. 

2.2. Non-linearity Layer  
In this layer, different function layers are applied. 

The objective of these functions is that they should 

present non-linearities. These nonlinearities are 

required for multi-layer networks. The standard 

activation functions are Rectified Linear Units 

(ReLU), sigmoid, and tanh. However, the (ReLU) 

are more desirable owing to the fact that neural 

networks get trained several times faster (Nair and 

Hinton, 2010). 

2.3. Pooling Layer  
The convolutional layer is mostly followed by the 

pooling layer. This layer takes small rectangular 

blocks from the preceding convolutional layer and 

samples them to generate a single maximum output 

from the block (Boureau et al., 2010; Ranzato et al., 

2007; Yang et al., 2009). The spatial size is 

minimized by the pooling layer; therefore, the 

parameters will also be minimized for 

computational purposes. In addition, this layer 

governs the overfitting process. 

2.4. Fully Connected Layer  
The high-level reasoning is conducted by one or 

more fully connected layers. The high-level 

reasoning is done by taking all the neurons in the 

preceding layer and linking them to every neuron in 

the present layer to produce global semantic 

information. 

 

3. APPLICATIONS OF CNNs 

In this paper, two of the main applications of CNNs 

will be discussed. These applications are natural 

language processing and computer vision. 

3.1. Natural Language Processing  
From the definition, extracting information from 

signals is one of the uses of CNNs (LeCun et al., 

1990; LeCun et al., 1998). Essentially, speech is a 

series of signals and in NLP, one of the significant 

duties is to recognize it. In addition, lately, CNNs 

have been deployed to sentence classification, topic 

categorization, sentiment analysis, and many other 

tasks. 

A. Speech Recognition: Recently, CNNs began to 

be implemented for speech recognition purposes, 

and it has shown better performance and results 

than deep neural networks (DNNs). In 2015, 

researchers in Microsoft Corporation stated four 

areas where CNNs are better than DNNs:  

1. The robustness of the noise.  

2. Distant speech recognition. 

3. Low-footprint models.  
4. Channel-mismatched training-test 

conditions (Huang et al., 2015). 

When the researchers applied a CNN on 1000 hours 

of Kinect distance, they obtained a 4% Word Error 

Rate Reduction (WERR) compared with a DNN on 

a similar size. Kinect is a series of motion sensors 

developed by Microsoft that enables users to 

interact with their computers using signs and voice 

commands (Zhang, 2012). Kinect distance is the 

distance that the device supports which is 1.2 to 3.5 

m (Zhang, 2012). The CNN structure, with maxout 

units, has been used for implementing small-

footprint models to devices to get 9.3% WERR 

from DNNs. To increase the robustness of CNNs, 

the polling needs to be done at a local frequency 

region. To avoid over-fitting, less parameters are 

used to extract the low-level features. Palaz and 

Collobert, 2015, state that for CNNs, implementing 

direct modeling is doable for the connection 

between raw speech signal and the phones. In 

addition, in comparison to the classical methods, an 

Automatic Speech Recognition (ASR) system is 

implementable. In this work, it is demonstrated that 

such ASR systems’ characteristics are impacted by 
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noise less than the Mel Frequency Cepstral 

Coefficients (MFCC) characteristics.  

There are two types of microphones to acquire the 

distant speech: Single Distant Microphone (SDM) 

and Multiple Distance Microphone (MDM). 

Although, there are several issues when dealing 

with distant speech, the main ones are multiple 

audio sources and continuous noise. Swietojanski 

and Arnab, 2014, discovered that, for distant speech 

recognition, a CNN enhances the WERR by 6.5% 

compared with a DNN and 15.7% over the 

Gaussian Mixture Model (GMM). The WERR 

improved by 3.5% relative to DNNs and 9.7% over 

the GMM, for cross-channel convolution. 

Commonly, RNNs are more popular in the case of 

Distant Speech Recognition owing to the accurate 

results that it produces. Stanford University 

researchers merged the RNN and CNN methods to 

obtain better results. In this combination, CNNs are 

deployed for frame-level classification and RNNs 

are implemented with a Connectionist Temporal 

Classification to decode the frames in a sequence of 

phonemes. They achieved 22.1% on a TIMIT 

dataset with CNNs, and the phone sequence has an 

error of 29.4% (Song and Cai, 2015).  

Nowadays, the main application in human-centered 

signal processing is Speech Emotion Recognition 

(SER) (Mao et al., 2014). To learn the salient 

features of SER, CNNs are implemented. Mao et 

al., 2014, trained CNNs for SER in two phases. 

First, the sparse encoder (SAE) is used to lean the 

local invariant features (LIF). Second, the LIF is fed 

into the salient descriptive feature analysis. This 

system proved to be steady in complicated 

scenarios. Zheng et al, 2015, used labelled training 

audio data to train a deep CNN for SER. To 

overcome the interference and minimize the 

dimensionality, they implemented the principle 

component analysis (PCA) technique. There were 2 

convolutional and 2 pooling layers in the system 

and acquired 40% accuracy for classification. 

Using hand-crafted audio features, the system was 

better than SVM-based classification. 

Over the years, researchers have been developing 

and building systems to deal with the significant 

issue of unwanted noise and minimizing it. The 

finest pooling, padding, and input feature map 

selection techniques were deployed by Qian et al., 

2016, and it was tested on two tasks, first, Aurora4 

Task and second, AMI meeting transcription task to 

evaluate its robustness. The design gained 17% 

enhancements compared with LSTM-RNN on 

Aurora4 and 10% decrease compared with the 

standard CNN in AMI. 

B. Text classification: Documents and sentences 

are shown as matrixes and they are dealt with using 

the NLP tasks. Every token represents a row in the 

matrix which can be a word or character. Therefore, 

every row is basically a vector that is a token. These 

vectors are low-dimensional representations named 

as word embeddings. Word embedding is a group 

of language modelling and feature learning 

technique in NLP in which words from the 

vocabulary are mapped to vectors of real numbers 

in a low-dimensional space (Mikolov et al., 2013). 

There are word embedding methods, for example, 

Word2vec suggested by Mikolov et al., 2013, and 

GloVe by Pennington et al., 2014. Using 100 billion 

words from Google News that are accessible 

publicly, the Word2vec was trained. In addition, 

using a fixed or varying filter size, the convolution 

is computed and the feature map is produced. For 

every feature map, pooling is executed. A final 

characteristics vector is produced and run through a 

final layer to complete the required tasks, for 

example, classification. In NLP, the main features 

of CNNs, location invariance and local 

compositionality, do not apply like they do in 

computer vision applications. The place of a word 

in a sentence is extremely important. In the case of 

pixels, the ones that are close to each other may 

belong to the same object and can be connected; 

however, in sentences, this does not apply as words 

that are close to each other do not necessarily have 

the same meaning, and consequently, they might 

not be connected. Hence, CNNs are applied to do 

classification tasks only, tasks such as topic 

categorization or sentiment analysis. For classical 

CNNs, it is difficult to perform tasks such as PoS 

tagging or entry extraction owing to the fact that 

sequence is important in these tasks, and 

convolution and pooling processes do not keep 

track of the sequence of the words.  
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The CNN was trained by Johnson and Zhang, 2014, 

with no vector of pre-trained words. In other words, 

high-dimensional data are used straightforwardly. 

In a second strategy, in the convolutional layer, the 

writers used a bag-of-words conversion. Both 

strategies overtook the other methods through 

minimizing the error rate to around 2% and 1.5% 

correspondingly. Pennington et al., 2014, 

developed their model by adding an unsupervised 

learning which realizes embeddings of test regions. 

This model overtook the earlier one through 

enhancing the results by almost 0.9%. For lengthy 

text, the method mentioned performs well; 

however, for short text it is unconfirmed. 

Different hyper parameters have to be taken in 

consideration when developing CNN designs such 

as the input representations, for example, 

Word2vec or one-hot, pooling methods, activation 

functions, and filters. To discover the effect of the 

hyper parameters mentioned earlier in the model 

functioning, Johnson and Zhang, 2015, executed a 

sensitivity analysis through changing different 

hyper parameters. They concluded that non-static 

word embeddings are better to be avoided when 

handling big datasets; the performance is directly 

affected by the filter size, and pooling is enhanced 

when using the 1-max pooling method. 

Recently, there has been progress in research 

studies to implement CNNs to characters directly. 

Santos and Zadrozny, 2014, worked on learning 

character-level embeddings and joining them with 

a pre-trained word embedding. Afterward, CNNs 

were used for Part Speech tagging. It gave results 

in two languages, English with an accuracy of 

97.32% on Penn Tree-bank WSJ corpus and 

Portuguese having 97.47% accuracy on the Mac-

Morphus Corpus where the error was minimized by 

approximately 12% in comparison to the best 

previous result. In both publications (Kim et al., 

2016; Zhang et al., 2015), CNNs were used to 

directly learn from characters. They implemented 

the model to sentiment analysis and text 

categorization with the aid of a deep network. The 

outcome changed depending on the dataset size, the 

alphabet selection, and whether the text is curated 

or not. Despite having 60% less parameter, it 

functions on par with existing state-of-the-art 

results on the English Penn Tree-bank. In languages 

with high morphology, it overtakes the preceding 

word-level models. 

3.2. Computer Vision  
To recognize the structure of an image, CNNs are 

deployed. Normally, an image is fed into the 

network as a grid of numbers; however, a better 

way to do it is by breaking the image into 

intersecting image tiles that are sent to a small 

neural network. 

CNNs consist of multiple trainable multilayer 

levels (LeCun et al., 1990). Feature maps are sets of 

arrays that represent, for each level, the input and 

output (LeCun et al., 1998). If the input is a colored 

image, every feature map will be a two-dimensional 

array that holds a color channel of the inputted 

image, and for videos it is a three-dimensional 

array. At every location in the inputted image, a 

feature is extracted. These extracted features are 

shown, at the output, as a feature map. Every level 

contains the following, first, a non-linearity layer, 

second, a filter bank layer, and, finally, a feature 

pooling layer. A classical CNN might contain up to 

three of these 3-layer levels and a categorization 

module that follows these levels. 

A. Face Recognition: a sequence of correlated 

problems arises with face recognition, these are as 

follows: 

1. Recognizing the faces in the picture. 

2. Focusing on every face even if the quality 

is low or the face is displayed in different 

poses. 

3. Recognizing unique characteristics.  

4. Matching the recognized characteristics 

with the ones in the database and 

specifying the person’s name. 

Faces are complex, multidimensional, visual 

stimuli that were displayed by a hybrid neural 

network merging local picture sampling, a self-

organizing map neural network, and a CNN. 

Karhunen-Loe`ve Transform was used to show the 

results instead of the self-organizing map that 

performed well (5.3% error versus 3.8%) and a 

multilayer perceptron that did badly (40% error 

versus 3.8%) (Lawrence et al., 1997).  

B. Scene Labeling: In scene labeling, every pixel is 

categorized under the class of the object that it fits 
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into. Farabet et al., 2012, suggested using a 

multiscale CNN which resulted in highest 

precisions on the Shift Floe Dataset (33 classes) and 

the Barcelona Dataset (170 classes) and close to the 

highest accuracy on the Stanford Background 

Dataset (8 classes). Their proposed method 

generated a 320-by-240 image labeling in less than 

a second with characteristics extraction (Farabet et 

al., 2012). 

The recurrent design for CNNs proposes a 

sequential series of networks that share a similar 

parameter set (Pinheiro and Collobert, 2014). 

Automatically, the network will learn to smoothen 

the labels that have been predicted. In addition, the 

system will recognize and fix the errors as the size 

of the context grows with the built-in recurrence. 

Regions with CNN characteristics (R-CNN) is a 

modest and scalable detection algorithm that 

enhances the mean average precision (mAP) by 

more than 30% compared with the previous best 

result on VOC 2012 that attained an mAP of 53.3% 

which was proposed by researchers at UCB and 

ICSI (Girshick et al., 2014). 

The methods of CNNs that have been mentioned 

earlier were deployed for semantic segmentation. 

For that purpose, every pixel that was categorized 

under the category of its region had some problems 

that were tackled by the fully convolutional 

networks that are trained end-to-end or pixel-to-

pixel. Fully convolutional networks customized 

from contemporary classification networks such as 

AlexNet (Krizhevsky et al., 2012), GoogleNet 

(Simonyan and Zisserman, 2014), and VGG net 

(Szegedy et all., 2015) accomplish the state-of-the-

art segmentation of PASCAL VOC (20% relative 

improvement to 62.2% mean IU on 2012), 

NYUDv2, and SIFT Flow, though reading takes no 

more than one-fifth of a second for a standard 

image (Long et al., 2015). 

In the last two years, deep convolutional neural 

networks (DCNNs) have enhanced the functioning 

of computer systems regarding the problems 

concerning image classification (Krizhevsky et al., 

2013; Papandreou et al., 2014; Sermanet et al., 

2013; Simonyan and Zisserman, 2014; Szegedy et 

al., 2014). 

C. Image Classification: As CNNs have the joint 

feature and classifier learning ability, they produce 

better classification accuracy compared with the 

other methods when operated on large-scale 

datasets (Gu et al., 2018). Krizhevsky et al., 2012, 

developed the AlexNet and attained the best 

performance in ILSVRC 2012. After this success, 

several other works accomplished important 

enhancements in the accuracy of the classification 

through minimizing the filter size (Strigl et al., 

2010) or increasing the network’s depth (Simonyan 

and Zisserman, 2014; Szegedy et al., 2015). 

A quick, completely parameterizable GPU usage of 

CNN, distributed benchmark outcomes for object 

detection (NORB, CIFAR10) with blunder rates of 

2.53%, 19.51%. Lowe, 1999, shows that a GPU 

code for picture classification is up to two times 

quicker than its CPU counterpart. Strigl et al., 2010, 

and Uetz and Behnke, 2009, state that multicolumn 

deep neural networks (MCDNNs) can beat every 

past strategy for image classification and show that 

pre-preparing is not needed (though once in a while 

helpful for small datasets) while diminishing the 

mistake rate by 30%-40% (Cireşan et al., 2012). 

Non-saturating neurons and effective GPU 

execution of the convolution operation brought 

about a triumphant best 5 test mistake rate of 

15.3%, contrasted with 26.2% accomplished by the 

second-best entry in the ILSVRC-2012 contest for 

the categorization of 1.2 million high-resolution 

pictures in the ImageNet LSVRC-2010 challenge 

into the 1000 unique classes (Krizhevsky et al., 

2012). 

On the basis of the fact that some classes in image 

classification are more ambiguous than others, the 

Hierarchical Deep Convolutional Neural Network 

(HD-CNN) was developed. It is based on the 

conventional CNNs that are N-way classifiers and 

follow the coarse-to-fine classification strategy and 

design module. HD-CNN with a CIFAR100-NIN 

building block shows a testing accuracy of 65.33% 

which is better than the accuracy of other standard 

deep models and HD-CNN models on the 

CIFAR100 dataset (Yan et al., 2015). 

Image classification systems that deal with fine-

grained images are grounded on the concept of 
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recognizing the foreground objects to distinguish 

unique features. Applying attention to fine-grained 

categorizing can be done with the least monitoring 

settings at which only the class label is given. This 

can be done using the attention taken from the CNN 

that is trained with a categorizing task. This is the 

opposite to the other techniques that need an object 

bounding box or a part landmark to train or test. For 

the CUB200-2011 dataset, under the poorest 

supervision setting, this method produces the 

highest accuracy (Xiao et al., 2015). 

D. Action Recognition: The trouble with creating a 

system for action recognition lies in the translation 

and spread of characteristics in various patterns that 

belong to the same action class. The old methods 

included the building of motion history, the usage 

of Hidden Markov Models, or the more up-to-date 

action sketch generation. The modified CNN model 

has a three-dimensional receptive field structure. 

This three-dimensional field structure offers 

translation invariant feature extraction capability. 

In addition, using a shared weight minimizes, in the 

action recognition system, the number of 

parameters. At Stanford University, researchers 

proposed a development to the standard methods 

used in visual recognition which were based on 

SIFT, proposed by Lowe, 1999, and HOG, 

proposed by Dalal and Triggs, 2005, by deploying 

the Independent Subspace Analysis (ISA) 

algorithm that is an extension of the Independent 

Component Analysis (ICA) that is famous for its 

use in natural image statistics (Dalal and Triggs, 

2005). The ISA algorithm to learn invariant spatio-

temporal characteristics from uncategorized video 

data was applied on the Hollywood2 and YouTube 

action datasets and it resulted in 53.3% and 75.8% 

accuracy percentage, respectively. This percentage 

is almost 5% better than the accuracy outcome 

published earlier. 

Wang et al., 2016, show that the temporal pyramid 

pooling–based CNN that is used for action 

recognition overcomes the possibility of 

overlooking the significant frames and needs less 

training data and gives better outcomes when 

applied on Hollywood2 and HMDB51 datasets. 

Two stream CNN designs which merge both spatial 

and temporal systems deliver competitive outcomes 

on the standard UCF101 and HMDB51 video 

activity benchmarks (Simonyan and Zisserman, 

2014). For recognizing human action in videos, a 

Pose-based Convolutional Neural Network (P-

CNN) descriptor is applied (Chéron et al., 2015). 

Functioning of appearance-based (App) and flow-

based (OF) P-CNN demonstrates an accuracy of 

73.4%maP for JHMDB-GT and 60.8%maP for the 

MPPII - Cooking Pose estimation datasets. R*CNN 

(Gkioxari et al., 2015) trains action-specific models 

and feature maps together which accomplishes 

90.2% mean AP on the Pascal VOC Action dataset 

overtaking the other methods in the arena by a high 

margin. 

By implementing three-dimensional convolutions, 

the three-dimensional CNN model for action 

recognition identifies and isolates characteristics, 

thus catching the motion information encoded in 

several neighboring frames. Intelligent video 

surveillance, customer characteristics, and 

shopping behavior analysis are instances of real-

world environments in which three-dimensional 

CNN beats the cube frame–based two-dimensional 

CNN model, SPM cube gray, and SPM MEHI. Ji et 

al., 2012, state that the three-dimensional CNN 

model is most efficient when there is a lower 

number of positive samples and attains a general 

accuracy of 90.2% as compared with 91.7% 

realized by the HMAX model (Jhuang et al., 2007). 

The reconfigurable CNN proposed by Wang et al, 

2014, optimized the present methods and 

accomplished an accuracy average of 81.2% on the 

CAD120 dataset, 60.1% on the OA1 dataset, and 

45.0% on the OA2 dataset. The accuracies obtained 

by reconfigurable CNNs are much better than the 

accuracy results demonstrated by the models 

proposed by Ji et al., 2012, and Xia and Aggarwal, 

2013. 

For higher performance, the computations need to 

be scaled up to enable large datasets and quicken 

the training on the models. Now, this is a pushing 

need for three-dimensional deep learning models 

with extended connectivity using CNNs. This can 

be accomplished utilizing multicore CPUs and 

GPUs by accomplishing data and model parallelism 

through making the preparation of models parallel. 

Rajeswar et al, 2015, determined that the three-

dimensional CNN code scales up the greatest on 

CPUs if the convolution step is applied with a 
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highly parallel FFT-based method, thus 

accomplishing the performance similar to GPUs 

using OpenMP.  

4. CONCLUSION 

As shown in this work, CNN offers better accuracy 

when compared with other standard approaches. In 

addition, it enhances the performance because of 

the special features it has such as shared weights 

and local connectivity. In applications related to 

computer vision and natural language processing, 

CNN has proven its superiority as it lessens the 

usual problems. 
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