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1. INTRODUCTION 

etwork programming started around the 1980s 

(Feamster et al., 2014). The emergence of 

megatrend increases in the domain of 

information and communication technologies (ICT) is 

increasing the challenges for future networks (Xia et al., 

2015). The legacy networks involve various components 

(routers and switches) running on dis tributed protocols 

and require manual configuration, long implementation 

times, and difficult to manage proprietary networks, 

which make it difficult for the customer to choose the 

hardware and software. With the major evolution of 

Internet of Things (IoT), mobile networks will need to 

handle a big influx in data, massive amounts of network 

traffic, and new types of connected devices such as 

industrial machines, smart cars, wearable sensors, 

actuators, and smart appliances (Nikoukar et al., 2018). 

One of the major building blocks of IoT devices is the low 

power and lossy networks (LLNs), a set of interconnected 

embedded devices such as sensor enabled devices. LLNs 

have been used widely in various fields such as modern 
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A B S T R A C T 

Mobile traffic volumes have grown exponentially because of the increase in services and applications. Traditional networks are complex to 

manage because the forwarding, control, and management planes are all bundled together and, thus, administrators are supposed  to 

deploy high-level policies, as each vendor has its own configuration methods. Software-Defined Networking (SDN) is considered the future 

paradigm of communication networks. It decouples control logic from its underlying hardware, thereby promoting logically cent ralized 

network control and making the network more programmable and easy to configure. Low-power wireless technologies are moving toward 

a multitenant and multiapplication Internet of Things (IoT), which requires an architecture with scalable, reliable, and conf igured solutions. 

However, employing an SDN-based centralized architecture in the environment of a low-power wireless IoT network introduces significant 

challenges, such as difficult-to-control traffic, unreliable links, network contention, and high associated overheads that can significantly 

affect the performance of the network. This paper is a contribution toward a performance evaluation for the use of SDN in wireless 

networking by evaluating the latency, packet drop ratio (PDR), data extraction rate (DER), and overheads. The resul ts show that SDN adds 

a high percentage of overheads to the network, which is about 43% of the 57% user packets, and the DER drops when the number of 

mesh nodes are increased, in addition to the high loss that was observed for packets that traveled over more hops. 

Keywords: SDN, CSMA, WSN, IoT 

RESEARCH ARTICLE 

Access this article online 

DOI: 10.25079/ukhjse.v4n2y2020.pp147-156 
E-ISSN: 2520-7792 

Copyright © 2020 Saleh and Qadir. Open Access journal with Creative 
Commons Attribution Non-Commercial No Derivatives License 4.0 (CC 
BY-NC-ND 4.0) 

 

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 147 

http://road.issn.org/issn_search?afs:query=2520-7792&afs:ip=MONIP#.Wml266iWbIU


Saleh and Qadir: Downside of software-defined networking. 

  

networking, traffic monitoring, home monitoring, process 

monitoring, medical monitoring, and environmental 

monitoring. The LLNs were introduced by different 

standardization bodies such as the Institute of Electrical 

and Electronics Engineers (IEEE) 802.15.4 and the IETF 

6TiSCH standards (Ghaleb et al., 2019). The IEEE 

802.15.4 standards form the basis for many low-power 

IoT protocols such as 6LowPAN, ZigBee, and 

WirelessHART. The main weakness of low-power 

wireless mesh networks is related to the limitations of the 

sensor resources and the underlying communication 

technologies. The constrained devices are restricted by 

their processing power, memory capacity, speed, energy, 

transmission rate, high variability of lossy links, and 

location.  

These devices, however, are expected to operate for 

months or years with low power consumption. SDN is a 

well-defined approach and a promising solution for other 

networking areas. However, employing an SDN-based 

centralized architecture in the environment of a low-

power wireless IoT network introduces important 

challenges, such as the difficulty to control traffic, 

unreliability of links, network contention, and high 

associated overheads, which can significantly affect the 

performance of the network (Baddeley et al., 2018). This 

paper evaluates the overhead cost of SDN traffic network 

performance, delay, DER, and PDR. We illustrate the 

results by showing how SDN-based carrier-sense 

multiple access (CSMA) can enhance the Quality of 

Service (QoS) and achieve a considerable reduction in the 

delay. The rest of this paper is organized as follows: 

section 2 discusses the previous work related to the use of 

SDN in low-power IoT networks, whereas section 3 

explains the evaluation environment. The results are 

presented and discussed in section 4. Finally, the 

conclusion is presented in section 5. 

2. OVERVIEW AND RELATED WORK 

2.1. SDN: the need, architecture, and deployment 

SDN is embodied by a separation of the network, thus, 

moving the control logic from the node to the centralized 

controller. This brings potential benefits such as a 

globally improved network performance, enhanced 

network manage ment and configuration, and encouraged 

innovation. In terms of network configuration and 

management, one of the key objectives is to achieve the 

possibility of reconfiguring network devices from a single 

point, automatically and dynamically, through software-

controlled optimization based on the network status. SDN 

encourages innovation by providing a sufficient testing 

environment with isolation, easy software 

implementation for new applications, and quick 

deployment of new applications by using a software 

upgrade. Another benefit of SDN is that the dynamic 

global control can be improved with cross-layer 

consideration. Specifically, SDN allows for a centralized 

control with a global view of the network and feedback 

control with the information that is exchanged among 

different layers in the architecture of the network (Xia et 

al., 2015). Moreover, SDN can be easy to maintain 

because new services or network upgrades can be 

performed without affecting the whole network.  

2.1.1. SDN architecture  

The Open Networking Foundation (ONF) is a non-profit 

industry consortium aimed at the development, 

standardization, and commercialization of SDN 

architecture elements such as OpenFlow protocols and 

SDN controllers. The ONF introduced an SDN reference 

model that consists of a 3-layer model which ranges from 

the infrastructure layer to the control layer, and to an 

application layer, all stacking over each other. The 

infrastructure layer consists of the physical network 

components (e.g., ethernet switches, routers, etc.) and this 

forms the data plane. The main functions of the SDN 

switching device model are classified into 2 categories. 

First, they simply are responsible for collecting and 

reporting the network status by storing data temporarily 

in local devices before forwarding these to the controllers. 

Second, they are responsible for processing packets based 

on the applied forwarding rules (Ominike et al., 2016). 

The control layer is the most important component in the 

SDN architecture. It bridges the infrastructure layer and 

the application layer through its 2 interfaces. The 

controller infrastructure interface (southbound interface), 

which interacts with the infrastructure layer, allows the 

controller access to the functions that are provided by the 

switching devices. The functions include collecting the 

network status and updating the packet forwarding rules 

to the switching devices at the infrastructure layer. The 

controller communicates with the switching devices 

through an OpenFlow protocol. The application-

controller interface (northbound interface), which handles 

the transactions with the application layer, provides a 
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variety of service access points such as an application 

programming interface (API). The policies received, 

described in high-level languages by SDN applications 

and network status synchronization are utilized to build 

the global network view (Xia et al., 2015). At the highest 

layer of the SDN architecture, the application layer 

includes the SDN applications. SDN applications are 

designed to fulfill the user requirements, such as the 

ability to access and manage the switch devices in the data 

plane, seamless mobility and migration, server load 

balancing, and network virtualization. 

2.2. SDN for wireless networks 

The recent evolutions in the wireless domain with the goal 

of integrating SDN and IoT are discussed in a number of 

previous studies (El-Mougy et al., 2015; Lasso et al., 

2018; Jian et al., 2017; Anadiotis et al., 2019). However, 

there are many fundamental issues of what SDN indicates 

when it comes to low-power sensor networks such as 

IEEE 802.15.4, which is allowed to serve key enablers for 

the IoT in the near future. Similar to OpenFlow, Sensor 

OpenFlow (Luo et al., 2012) was the first attempt at 

integrating SDN in Wireless Sensor Networks (WSNs). 

The authors introduced a customized, low-power protocol 

built on the legacy southbound communications for SDN 

rather than using OpenFlow directly because of the 

complexity in the implementation of the Out-Of-Band 

(OOB) control-plane connection model within a sensor 

network.  

They developed an algorithm called Control Message 

Quenching (CMQ) for OpenFlow to reduce the SDN 

control overhead. In a study by De Oliveira et al. (2015), 

the authors of TinySDN attempted to utilize an SDN to 

establish a flexible solution for WSN and IoT 

deployment, because an SDN-based centralized 

controller could achieve node retasking and routing and 

enable a better resource sharing and management 

platform. They examined the TinySDN and IPv6 routing 

protocol for LLNs (RPL) in terms of their routing 

features, interoperability, and ability to support traditional 

networks. The study only presented solutions to RPL 

shortages in the context of SDN. Costanzo et al. (2012) 

proposed SDNWN, an architectural framework that 

highlights the impact of SDN in low-power WSN. They 

presented the concept of utilizing protocol oblivious 

forwarding (POF) as a key enabler for a highly flexible 

and programmable SDN. It was demonstrated to 

minimize the memory footprint and allow the flowtable 

to match on bytes arrays and a packet index inside the 

packet rather than being included in multiple flows for 

specific packet types. Another SDWSN that seeked to 

improve the traffic routing and WSN sensor 

programmability was implemented and tested for IEEE 

802.15.4 in the study by Galluccio et al. (2015). The aim 

of an SDN solution for Wireless Sensor networks (SDN-

WISE) is to reduce the number of packets exchanged 

between the SDN controller and the sensor nodes, as well 

as to enable sensor nodes to be programmed as Finite 

State Machine (FSM) for running different domains. The 

SDN-WISE attempts to produce APIs that allow the 

developers to use the programming languages of their 

preference when they build SDN controllers.  

The prototype of SDN-WISE was developed using a real 

SDN controller and an Objective Modular Network 

Testbed in C++ (OMNET++) simulator. The aim of their 

system is to increase the elasticity of the network and 

provide realization of network programmability. Lasso et 

al. (2018) proposed a software-defined wireless sensor 

network architecture based on 6LoWPAN networks (SD-

WSN6LO). Two main components were introduced in the 

framework, namely an SDN sensor node and SDN 

controller node. They demonstrated the result of power 

consumption for their implementation in Contiki OS, 

however, no details about the architecture and 

implementation were presented. The work of Galluccio et 

al. (2015) demonstrated how logical WSNs can coexist by 

exploiting the same set of sensor nodes and how easy it is 

to program the behavior of sensor nodes with a few lines 

of code. Their system was compared with the state-of-art 

SDN-WISE system in terms of reducing the number of 

messages exchanged between the sensors and controllers.  

Furthermore, the study provided a new method of 

network virtualization called SDN-Visor, which allows 

the creation of several virtual WSNs under different 

controllers. The challenge of including SDN architecture 

with a high associated cost into low-power sensor 

networks is addressed in the study by Theodorou and 

Mamatas (2017). The authors proposed to minimize the 

amount of RPL control messages in SDN for an Internet 

Protocol version 6 (IPv6)-based IEEE 802.15.4 network 

through fine tuning the timer setting in RPL. The aim was 

to provide the scalability and management for an SDN 

protocol. 
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2.2.1. SDN controllers  

The most important component in SDN is the controller, 

which is the cornerstone of the architecture of SDN. The 

main concept behind the controller is to manage the traffic 

in underlying network devices by using a set of 

instructions. A number of previous studies conducted a 

partial performance evaluation for controllers (Zhao et al., 

2015; Rowshanrad et al., 2016; Asadollahi et al., 2017; 

Asadollahi et al., 2018). The performance of 5 open 

course controllers, namely Ryu (RYU), POX (POX), 

NOX (NOX), Floodlight (Floodlight), and Beacon 

(Beacon) was investigated in a study by Zhao et al. (2015) 

using optimized configurations for each of the controllers. 

Beacon was found to outperform the others in terms of 

latency and throughput by having a low latency (0.1 ms) 

and high throughput (1750 ms).  

It also increased fairness. Rowshanrad et al. (2016) 

evaluated the performance of controllers such as 

Floodlight and OpenDaylight. They showed that 

OpenDaylight performed better than Floodlight for low 

and medium network loads in terms of latency, loss of 

packets, and throughput. However, Floodlight performed 

well with heavy network loads such as multimedia. 

Previous studies recognized issues with the simulation 

and emulation of SDN.  

Asadollahi et al. (2017) introduced a linear topology to 

evaluate the scalability and performance of a network by 

emulating an Open Flow Network (OFNet) (OFNet) over 

the Floodlight controller. The aim was to define the 

performance metrics for the Floodlight controller. 

However, Asadollahi et al. (2018) proposed a mesh 

topology to evaluate the performance and scalability of a 

Ryu controller. They performed various experiments 

using the simulation tools Mininet, Ryu controller, and 

iPerf (iperf). The objective of the study was to test the 

scalability feature of the Ryu controller in the SDN 

environment.  

3. EVALUATION ENVIRONMENT 

This paper evaluated the performance of SDN for 

wireless communication using a simulation. A number of 

different types of software, packages, and tools were used 

for this purpose. The main components of our evaluation 

platform are described in detail below. 

3.1. Operating systems 

Linux is a full open-source, UNIX-based system with a 

large support community. It has immediate advantages 

for developers and programmers who develop their own 

tools, packages, and customized applications. Being an 

open-source system, Linux has attracted the academic 

community and researchers whose concerns in terms of 

the ability to access and have full control over the 

hardware and system libraries are best met by this system. 

In this paper, Ubuntu, a flavor of Linux 12.04 LTS (64-

bit), was used as the operation system.  

It was installed on a Lenovo-IdeaPad-Y510P Laptop with 

an Intel Core i7-4700MQ processor with 7.7 gigabytes of 

random access memory. In this environment, it was 

unnecessary to install the Contiki platform because it was 

included as part of the µSDN (Baddeley et al., 2018), a 

low overhead SDN stack, and embedded in the SDN 

controller for Contiki OS. However, it was necessary to 

install compilers such as the 20-bit mspgcc compiler (20-

bit) and the precompiled MSP430-GCC version 4.7.3 

(msp430). The reason for using the 20-bit mspgcc 

compiler was to support up to 1 MB of memory. 

Platforms such as Cooja and WiSMote are based on the 

MSP430X series central processing unit (CPU) and 

support more memory than the 64K address space. 

3.2. Simulator 

A simulator could be used as an alternative to simplify the 

research environment. Cooja is an open-source simulator 

that aids in the testing of protocols or applications on 

emulated motes based on operating systems such as 

TinyOS or Contiki OS (Dunkels et al., 2004). The main 

feature of the Cooja network simulator is the ability to 

simulate any number of platform sensor nodes 

(Hendrawan & Arsa, 2017). It supports a set of standards 

such as TR 1100, TI CC2420, Contiki RPL, IEEE 

802.15.4, uIPv6 stack, and uIPv4 stack (Helkey et al., 

2016). All simulations in this work were tested in Cooja 

using a Unit Disk Graph Medium (UDGM) distance loss. 

The reason for using a simulated UDGM distance loss 

radio environment is that it allows implementation and 

testing of the new directional property of nodes. A node 

can receive a packet from a sender only if it is within its 

radius, which is defined by the transmission range. 

3.3. SDN framework 
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An SDN standard for low-power wireless networks called 

µSDN (Baddeley et al., 2018) was used for simulation in 

this study. µSDN is a lightweight SDN architecture for 

Contiki OS, which supports both IPv6 and 

interoperability with distributed routing protocols such as 

RPL, as well as optimizes the combination of a number of 

overhead reduction functions to enhance the scalability 

and mitigate the cost of the SDN within a low-power IoT 

environment. 

3.4. Simulation setup 

We evaluated the performance of an implemented SDN 

in a wireless network through simulation, presenting a 

use-case scenario in which the SDN can be used within 

low power, multihop wireless networks in order to 

programmatically improve the QoS and show how a 

CSMA-SDN can achieve significant reductions in delay. 

The simulations were performed on an emulated 

EXP5438 platform with a TI’s MSP430F5438 CPU and 

CC2420 radio, with evaluation in the Cooja simulator for 

the Contiki OS environment using a UDGM distance loss 

model with the configuration parameters listed in Table 

1.

Table 1: Cooja Simulators Parameters Setup 
 

Cooja simulation parameters Setting 

Simulation period 1 h 

Radio environment UDGM with Distance Loss Model 

Node transmission range 100 m 

MAC layer CSMA 

Transmitting nodes All 

Receiving node controller 

Number of nodes 20, 30, 40 

Link quality 50%, 70%, 90% 

Transmission data period 60–75 s 

RPL mode Non-storing 

RPL route lifetime 10 min 

RPL default route lifetime ∞ 

µSDN flowtable lifetime 300 s 

µSDN update period 180 s 
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A total of 30 random realizations of the SDN deployment 

was run. Data from the Contiki logs were collected and 

the characteristics of the network entries were analyzed 

using Matlab.  

 

The performance metrics included the end-to-end 

application flow delay, PDR, DER, and ratio of network 

traffic. All the performance metrics are described in Table 

2.

Table 2: Performance Metrics 
 
Metrics Description 

End-to-end application delay It determines how the SDN overhead affects the application 
traffic latency. 

Packet Drop Ratio (PDR) The ratio of the number of lost application packets to the total 
number of sent application packets. 

Data Extraction Rate (DER) The ratio of received application messages to transmitted 
application messages over a period of time. 

Ratio of network traffic Ratio of application traffic, and SDN traffic in µSDN. 

4. RESULTS AND DISCUSSION 

The performance metrics of the SDN were investigated 

for wireless networks in the following scenarios: 

(1) End-to-End Delay: In this scenario, we measured the 

overheads incurred by application messages and the end-

to-end latency. In this experiment, the network consisted 

of 30 nodes with the maximum of 6 hops to the controller, 

a transmission ratio (Tx) of 100%, and a reception (Rx) 

ratio of 90% for each mesh node. In addition, the SDN 

controller collected information from all the nodes every 

60 seconds, which included node energy, node state, and 

buffer congestion. Each simulation that was ran collected 

data from the mesh node flowtable entities, which have a 

300 second lifetime. The transmitting nodes sent data to 

the sink every 60 to 75 seconds. It is clearly seen that there 

is an increase in the delay with an increase in the number 

of the hops. This is obviously because of the fact that 

packets travel longer when increasing the number of hops 

and every single node along the path needs to perform a 

flowtable check for incoming packets, which 

substantially contributes to the delay. This trend can be 

observed in Figure 1, which shows the average of the end-

to-end application flow latency vs. the number of hops.  

The results of the delay in this paper is corroborated by 

the results of the delay in other papers (Baddeley et al., 

2018). 
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Figure 1. Average latency of application flow vs. hops for a 30-node network 

(2) PDR: It refers to the ratio of the number of lost 

application packets to the total number of sent application 

packets. The PDR is computed with the help of the 

formula presented below: 

𝑃𝐷𝑅 =
Total sent packets− Total received packets

Total sent packets
       (1) 

A total of 30 mesh nodes with a maximum of 6 hops in 

which all the nodes need to participate in the SDN 

controller, were used to evaluate the SDN reliability. 

Figure 2 shows the PDR percentage for various hop 

numbers in a 30-node network. The overall trend 

indicated a higher percentage loss for packets that 

traveled over more hops. Because packets are forwarded 

by hops, there is high probability that packet loss will 

occur because of congestion and MAC layer fails shortly 

after initialization. In addition, because each node 

forwards packets through an SRHI, they require a source 

routing header, which needs to be received from the 

controller. The reason for the high network activity is 

because the FTQ/FTS messages are occasionally dropped 

and, therefore, the application messages are lost. 

However, this is not always the case as can be noticed in 

the Figure 2 in which the PDR for 3 and 4 hops are less 

than the PDRs for 2 hops. 

 

 

Figure 2. Percentage of PDR vs. hops for a 30-node network 
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(3) DER: It is 1 of the performance metrics determined in 

this study. It is defined as the ratio of the received packets 

to the total number of packets transmitted by a mesh node 

over a period of time. The formula for measuring the DER 

is as follows: 

 

𝐷𝐸𝑅 =
 𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
                    (2) 

We evaluated this by running a simulation of the network 

topology with a 20-, 30-, and 40-node mesh network over 

1 to 15 hops with a 50%, 70%, and 90% link quality and 

a transmission range of 100 m. The simulation was ran for 

approximately 1 hour. DER is a value between 0 to 1: the 

closer the value is to 1, the more effective the deployment 

is. With an increase in the number of mesh nodes, the 

DER drops, as can be seen in Figure 3. For example, for 

a link quality of 50%, the DER is 0.45, 0.39, and 0.32 for 

a network with 20, 30, and 40 nodes, respectively. The 

DER, however, increases with a better-quality link. The 

DER was calculated to be 0.45, 0.5, and 0.611 for a link 

quality of 50%, 70%, and 90%, respective ly. 

 

Figure 3. The DER for 20-, 30-, and 40-node topologies with a link quality of 50%, 70%, and 90%

(4) Analysis of the network traffic (user data and 

overhead): one objective of this paper was to evaluate the 

overheads introduced by using an SDN with overhead 

reduction techniques to show the effect of mitigating the 

cost of an SDN within a low power, multihop mesh 

framework on the network performance. The network 

traffic ratio can be determined by using the following 

formula: 

S𝐷𝑁 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑅𝑎𝑡𝑖𝑜 =
 𝑇𝑜𝑡𝑎𝑙 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝐴𝑝𝑝 𝑇𝑟𝑎𝑓𝑓𝑖𝑐

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐
 (3) 

𝑈𝑠𝑒𝑟 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐−𝑇𝑜𝑡𝑎𝑙 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝐴𝑝𝑝 𝑇𝑟𝑎𝑓𝑓𝑖𝑐

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐
     (4) 

The application ratio and the SDN traffic are shown in 

Figure 4. The figure shows the network traffic for the user 

packets and network overheads at different numbers of 

nodes. The user packets refer to the application traffic, 

whereas the network overheads refer to the type of SDN 

packets such as CONF, FTQ, FTS, and NSU, which are 

described in the SDN framework. The figure clearly 

demonstrates higher traffic percentages for the user 

packets when compared with that of the network 

overheads for all considered network topology scenarios 

(20, 30, and 40 nodes). It also shows high traffic 

percentages for network overheads that are generated by 

the SDN packets. This high traffic percentage for network 

overheads places SDN in a challenging position, which 

requires further study. For instance, the user packets and 

network overhead percentages were found to be 57.31% 

and 42.68%, respectively, for a 30-node scenario. 

However, similar studies (Baddeley et al., 2018) reported 

approximately 25% for user packets and 75% for network 

overheads for the same network size.
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Figure 4. Percentage of network traffic in an SDN network 

5. CONCLUSION 

In this paper, we applied the SDN concept to a wireless 

network and evaluated its performance in terms of end-

to-end delay, PDR, DER, and the SDN overhead. We 

used a lightweight SDN architecture designed for low-

power wireless communication, called µSDN, to 

implement the SDN in the wireless environment in order 

to programmatically improve the QoS. In this study, the 

performance was evaluated using a Cooja simulator for 

Contiki OS. In particular, we considered the end-to-end 

delay, PDR, DER, and percentage of network traffic as 

evaluation metrics of the performance of the SDN-based 

wireless network. Our results indicated that increasing the 

number of nodes causes a drop in the DER of about 0.45, 

0.5, and 0.6 for a link quality of 50%, 70%, and 90%, 

respectively. Finally, SDN simplifies the network 

management and configuration, however, it adds a high 

percentage of overhead to the network of about 43% in 

comparison with 57% for the user packets. Further 

investigation on the power consumption of the network is 

required. 

REFERENCES 

20-bit, M. (n.d.). Retrieved from https://github.com/contiki-

os/contiki/wiki/MSP430X. 

Anadiotis, A.-C., Galluccio, L., Milardo, S., Morabito, G. & Palazzo, S. 

(2019). SD-WISE: A Software-Defined WIreless SEnsor network. 

Computer Networks. doi: 

https://doi.org/10.1016/j.comnet.2019.04.029  

Asadollahi, S., Goswami, B. & Sameer, M. (2018, 2). Ryu controller's 

scalability experiment on software defined networks. 2018 IEEE 

International Conference on Current Trends in Advanced 

Computing (ICCTAC), (pp. 1–5). 

doi:10.1109/ICCTAC.2018.8370397 

Asadollahi, S., Goswami, B., Raoufy, A. S. & Domingos, H. G. (2017, 

12). Scalability of software defined network on floodlight controller 

using OFNet. 2017 International Conference on Electrical, 

Electronics, Communication, Computer, and Optimization 

Techniques (ICEECCOT), (pp. 1–5). 

doi:10.1109/ICEECCOT.2017.8284567 

Baddeley, M., Nejabati, R., Oikonomou, G., Sooriyabandara, M. & 

Simeonidou, D. (2018, 6). Evolving SDN for Low-Power IoT 

Networks. 2018 4th IEEE Conference on Network Softwarization 

and Workshops (NetSoft), (pp. 71–79). 

doi:10.1109/NETSOFT.2018.8460125 

Baddeley, M., Raza, U., Stanoev, A., Oikonomou, G. C., Nejabati, R., 

Sooriyabandara, M., & Simeonidou, D. (2019). Atomic-SDN: Is 

Synchronous Flooding the Solution to Software-Defined 

Networking in IoT? IEEE Access, 7, 96019-96034. 

Beacon. (n.d.). Retrieved from 

https://openflow.stanford.edu/display/Beacon 

Costanzo, S., Galluccio, L., Morabito, G., & Palazzo, S. (2012, 10). 

Software Defined Wireless Networks: Unbridling SDNs. 2012 

European Workshop on Software Defined Networking, (pp. 1–6). 

doi:10.1109/EWSDN.2012.12 

de Oliveira, B. T., Alves, R. C., & Margi, C. B. (2015, 10). Software-

defined Wireless Sensor Networks and Internet of Things 

standardization synergism. 2015 IEEE Conference on Standards 

for Communications and Networking (CSCN), (pp. 60–65). 

doi:10.1109/CSCN.2015.7390421 

Dunkels, A., Gronvall, B. & Voigt, T. (2004, 11). Contiki - a lightweight 

and flexible operating system for tiny networked sensors. 29th 

Annual IEEE International Conference on Local Computer 

Networks, (pp. 455–462). doi:10.1109/LCN.2004.38 

El-Mougy, A., Ibnkahla, M., & Hegazy, L. (2015, 10). Software-defined 

wireless network architectures for the Internet-of-Things. 2015 

IEEE 40th Local Computer Networks Conference Workshops (LCN 

Workshops), (pp. 804–811). doi:10.1109/LCNW.2015.7365931 

Feamster, N., Rexford, J., & Zegura, E. (2014, 4). The Road to SDN: An 

Intellectual History of Programmable Networks. SIGCOMM 

Comput. Commun. Rev., 44, 87–98. 

doi:10.1145/2602204.2602219 

Floodlight. (n.d.). Retrieved from http://floodlight.openflowhub.org/  

Galluccio, L., Milardo, S., Morabito, G. & Palazzo, S. (2015, 4). 

Reprogramming Wireless Sensor Networks by using SDN-WISE: 

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 155 

https://github.com/contiki-os/contiki/wiki/MSP430X
https://github.com/contiki-os/contiki/wiki/MSP430X
https://doi.org/10.1016/j.comnet.2019.04.029
https://openflow.stanford.edu/display/Beacon
http://floodlight.openflowhub.org/


Saleh and Qadir: Downside of software-defined networking. 

  

A hands-on demo. 2015 IEEE Conference on Computer 

Communications Workshops (INFOCOM WKSHPS), (pp. 19–20). 

doi:10.1109/INFCOMW.2015.7179322 

Galluccio, L., Milardo, S., Morabito, G. & Palazzo, S. (2015, 4). SDN-

WISE: Design, prototyping and experimentation of a stateful SDN 

solution for WIreless SEnsor networks. 2015 IEEE Conference on 

Computer Communications (INFOCOM), (pp. 513–521). 

doi:10.1109/INFOCOM.2015.7218418 

Ghaleb, B., Al-Dubai, A.Y., Ekonomou, E., Alsarhan, A., Nasser, Y., 

Mackenzie, L.M. & Boukerche, A. (2019). A Survey of Limitations 

and Enhancements of the IPv6 Routing Protocol for Low-Power 

and Lossy Networks: A Focus on Core Operations. IEEE 

Communications Surveys Tutorials, 21, 1607–1635. 

doi:10.1109/COMST.2018.2874356 

Helkey, J., Holder, L., & Shirazi, B. (2016). Comparison of simulators for 

assessing the ability to sustain wireless sensor networks using 

dynamic network reconfiguration. Sustainable Computing: 

Informatics and Systems, 9, 1–7. 

doi:https://doi.org/10.1016/j.suscom.2016.01.003 

Hendrawan, I. N. & Arsa, I. G. (2017, 11). Zolertia Z1 energy usage 

simulation with Cooja simulator. 2017 1st International Conference 

on Informatics and Computational Sciences (ICICoS), (pp. 147–

152). doi:10.1109/ICICOS.2017.8276353 

iperf. (n.d.). Retrieved from  https://iperf.fr/. 

Jian, D., Chunxiu, X., Muqing, W., & Wenxing, L. (2017, 12). Design and 

implementation of a novel software-defined wireless sensor 

network. 2017 3rd IEEE International Conference on Computer 

and Communications (ICCC), (pp. 729–733). 

doi:10.1109/CompComm.2017.8322639  

Lasso, F. F., Clarke, K., & Nirmalathas, A. (2018, 4). A software-defined 

networking framework for IoT based on 6LoWPAN. 2018 Wireless 

Telecommunications Symposium (WTS), (pp. 1–7). 

doi:10.1109/WTS.2018.8363938 

Luo, T., Tan, H., & Quek, T. Q. (2012, 11). Sensor OpenFlow: Enabling 

Software-Defined Wireless Sensor Networks. IEEE 

Communications Letters, 16, 1896–1899. 

doi:10.1109/LCOMM.2012.092812.121712 

Miguel, M., Jamhour, E., Pellenz, M., & Penna, M. (2018, 11). SDN 

architecture for 6LoWPAN wireless sensor networks. Sensors, 18, 

3738. doi:10.3390/s18113738 

msp430. (n.d.). Retrieved from https://github.com/pksec/msp430-gcc-

4.7.3 

Nikoukar, A., Raza, S., Poole, A., Güneş, M., & Dezfouli, B. (2018). Low-

Power Wireless for the Internet of Things: Standards and 

Applications. IEEE Access, 6, 67893–67926. 

doi:10.1109/ACCESS.2018.2879189 

NOX. (n.d.). Retrieved from https://github.com/noxrepo/nox.  

OFNet. (n.d.). Retrieved from http://sdninsights.org/.  

Ominike, A., Seun, E., A. O., A., & Osisanwo, F. (2016, 12). Introduction 

to Software Defined Networks (SDN). International Journal of 

Applied Information Systems, 11, 10–14. 

doi:10.5120/ijais2016451623 

POX. (n.d.). Retrieved from http://www.noxrepo.org/pox/about-pox/. 

Rowshanrad, S., Abdi, V. & Keshtgari, M. (2016, 11). Performance 

evaluation OF SDN controllers: Floodlight and Openday Light. 

IIUM Engineering Journal, 17, 47–57. 

doi:10.31436/iiumej.v17i2.615 

Ryu. (n.d.). Retrieved from http://sdnhub.org/tutorials/ryu/ 

Theodorou, T., & Mamatas, L. (2017, 11). CORAL-SDN: A software-

defined networking solution for the Internet of Things. 2017 IEEE 

Conference on Network Function Virtualization and Software 

Defined Networks (NFV-SDN), (pp. 1–2). doi:10.1109/NFV-

SDN.2017.8169870 

Xia, W., Wen, Y., Foh, C., Niyato, D., & Xie, H. (2015, 1). A Survey on 

Software-Defined Networking. Communications Surveys & 

Tutorials, IEEE, 17, 27–51. doi:10.1109/COMST.2014.2330903 

Zhao, Y., Iannone, L., & Riguidel, M. (2015, 11). On the performance of 

SDN controllers: A reality check. 2015 IEEE Conference on 

Network Function Virtualization and Software Defined Network 

(NFV-SDN), (pp. 79–85). doi:10.1109/NFV-SDN.2015.7387

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 156 

https://doi.org/10.1016/j.suscom.2016.01.003
https://iperf.fr/
https://github.com/pksec/msp430-gcc-4.7.3
https://github.com/pksec/msp430-gcc-4.7.3
https://github.com/noxrepo/nox
http://sdninsights.org/
http://www.noxrepo.org/pox/about-pox/
http://sdnhub.org/tutorials/ryu/

