

The Downside of Software-Defined Networking in
Wireless Network

Zahraa Zakariya Saleh1, Qahhar Muhammad Qadir 2,3*

1Department of English, College of Education and Language, Lebanese French University, Erbil, Kurdistan Region- F. R. Iraq

2Department of Electrical Engineering, College of Engineering, Salahaddin University-Erbil, Erbil, Kurdistan Region- F. R. Iraq

3Department of Computer Science and Engineering, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region- F.

R. Iraq

*Corresponding author’s email: zahraa.saleh@lfu.edu.krd

Received: 07-05-2020 Accepted: 23-07-2020 Available online: 31-12-2020

1. INTRODUCTION

etwork programming started around the 1980s

(Feamster et al., 2014). The emergence of

megatrend increases in the domain of

information and communication technologies (ICT) is

increasing the challenges for future networks (Xia et al.,

2015). The legacy networks involve various components

(routers and switches) running on dis tributed protocols

and require manual configuration, long implementation

times, and difficult to manage proprietary networks,

which make it difficult for the customer to choose the

hardware and software. With the major evolution of

Internet of Things (IoT), mobile networks will need to

handle a big influx in data, massive amounts of network

traffic, and new types of connected devices such as

industrial machines, smart cars, wearable sensors,

actuators, and smart appliances (Nikoukar et al., 2018).

One of the major building blocks of IoT devices is the low

power and lossy networks (LLNs), a set of interconnected

embedded devices such as sensor enabled devices. LLNs

have been used widely in various fields such as modern

N

A B S T R A C T

Mobile traffic volumes have grown exponentially because of the increase in services and applications. Traditional networks are complex to

manage because the forwarding, control, and management planes are all bundled together and, thus, administrators are supposed to

deploy high-level policies, as each vendor has its own configuration methods. Software-Defined Networking (SDN) is considered the future

paradigm of communication networks. It decouples control logic from its underlying hardware, thereby promoting logically cent ralized

network control and making the network more programmable and easy to configure. Low-power wireless technologies are moving toward

a multitenant and multiapplication Internet of Things (IoT), which requires an architecture with scalable, reliable, and conf igured solutions.

However, employing an SDN-based centralized architecture in the environment of a low-power wireless IoT network introduces significant

challenges, such as difficult-to-control traffic, unreliable links, network contention, and high associated overheads that can significantly

affect the performance of the network. This paper is a contribution toward a performance evaluation for the use of SDN in wireless

networking by evaluating the latency, packet drop ratio (PDR), data extraction rate (DER), and overheads. The resul ts show that SDN adds

a high percentage of overheads to the network, which is about 43% of the 57% user packets, and the DER drops when the number of

mesh nodes are increased, in addition to the high loss that was observed for packets that traveled over more hops.

Keywords: SDN, CSMA, WSN, IoT

RESEARCH ARTICLE

Access this article online

DOI: 10.25079/ukhjse.v4n2y2020.pp147-156
E-ISSN: 2520-7792

Copyright © 2020 Saleh and Qadir. Open Access journal with Creative
Commons Attribution Non-Commercial No Derivatives License 4.0 (CC
BY-NC-ND 4.0)

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 147

http://road.issn.org/issn_search?afs:query=2520-7792&afs:ip=MONIP#.Wml266iWbIU

Saleh and Qadir: Downside of software-defined networking.

networking, traffic monitoring, home monitoring, process

monitoring, medical monitoring, and environmental

monitoring. The LLNs were introduced by different

standardization bodies such as the Institute of Electrical

and Electronics Engineers (IEEE) 802.15.4 and the IETF

6TiSCH standards (Ghaleb et al., 2019). The IEEE

802.15.4 standards form the basis for many low-power

IoT protocols such as 6LowPAN, ZigBee, and

WirelessHART. The main weakness of low-power

wireless mesh networks is related to the limitations of the

sensor resources and the underlying communication

technologies. The constrained devices are restricted by

their processing power, memory capacity, speed, energy,

transmission rate, high variability of lossy links, and

location.

These devices, however, are expected to operate for

months or years with low power consumption. SDN is a

well-defined approach and a promising solution for other

networking areas. However, employing an SDN-based

centralized architecture in the environment of a low-

power wireless IoT network introduces important

challenges, such as the difficulty to control traffic,

unreliability of links, network contention, and high

associated overheads, which can significantly affect the

performance of the network (Baddeley et al., 2018). This

paper evaluates the overhead cost of SDN traffic network

performance, delay, DER, and PDR. We illustrate the

results by showing how SDN-based carrier-sense

multiple access (CSMA) can enhance the Quality of

Service (QoS) and achieve a considerable reduction in the

delay. The rest of this paper is organized as follows:

section 2 discusses the previous work related to the use of

SDN in low-power IoT networks, whereas section 3

explains the evaluation environment. The results are

presented and discussed in section 4. Finally, the

conclusion is presented in section 5.

2. OVERVIEW AND RELATED WORK

2.1. SDN: the need, architecture, and deployment

SDN is embodied by a separation of the network, thus,

moving the control logic from the node to the centralized

controller. This brings potential benefits such as a

globally improved network performance, enhanced

network manage ment and configuration, and encouraged

innovation. In terms of network configuration and

management, one of the key objectives is to achieve the

possibility of reconfiguring network devices from a single

point, automatically and dynamically, through software-

controlled optimization based on the network status. SDN

encourages innovation by providing a sufficient testing

environment with isolation, easy software

implementation for new applications, and quick

deployment of new applications by using a software

upgrade. Another benefit of SDN is that the dynamic

global control can be improved with cross-layer

consideration. Specifically, SDN allows for a centralized

control with a global view of the network and feedback

control with the information that is exchanged among

different layers in the architecture of the network (Xia et

al., 2015). Moreover, SDN can be easy to maintain

because new services or network upgrades can be

performed without affecting the whole network.

2.1.1. SDN architecture

The Open Networking Foundation (ONF) is a non-profit

industry consortium aimed at the development,

standardization, and commercialization of SDN

architecture elements such as OpenFlow protocols and

SDN controllers. The ONF introduced an SDN reference

model that consists of a 3-layer model which ranges from

the infrastructure layer to the control layer, and to an

application layer, all stacking over each other. The

infrastructure layer consists of the physical network

components (e.g., ethernet switches, routers, etc.) and this

forms the data plane. The main functions of the SDN

switching device model are classified into 2 categories.

First, they simply are responsible for collecting and

reporting the network status by storing data temporarily

in local devices before forwarding these to the controllers.

Second, they are responsible for processing packets based

on the applied forwarding rules (Ominike et al., 2016).

The control layer is the most important component in the

SDN architecture. It bridges the infrastructure layer and

the application layer through its 2 interfaces. The

controller infrastructure interface (southbound interface),

which interacts with the infrastructure layer, allows the

controller access to the functions that are provided by the

switching devices. The functions include collecting the

network status and updating the packet forwarding rules

to the switching devices at the infrastructure layer. The

controller communicates with the switching devices

through an OpenFlow protocol. The application-

controller interface (northbound interface), which handles

the transactions with the application layer, provides a

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 148

Saleh and Qadir: Downside of software-defined networking.

variety of service access points such as an application

programming interface (API). The policies received,

described in high-level languages by SDN applications

and network status synchronization are utilized to build

the global network view (Xia et al., 2015). At the highest

layer of the SDN architecture, the application layer

includes the SDN applications. SDN applications are

designed to fulfill the user requirements, such as the

ability to access and manage the switch devices in the data

plane, seamless mobility and migration, server load

balancing, and network virtualization.

2.2. SDN for wireless networks

The recent evolutions in the wireless domain with the goal

of integrating SDN and IoT are discussed in a number of

previous studies (El-Mougy et al., 2015; Lasso et al.,

2018; Jian et al., 2017; Anadiotis et al., 2019). However,

there are many fundamental issues of what SDN indicates

when it comes to low-power sensor networks such as

IEEE 802.15.4, which is allowed to serve key enablers for

the IoT in the near future. Similar to OpenFlow, Sensor

OpenFlow (Luo et al., 2012) was the first attempt at

integrating SDN in Wireless Sensor Networks (WSNs).

The authors introduced a customized, low-power protocol

built on the legacy southbound communications for SDN

rather than using OpenFlow directly because of the

complexity in the implementation of the Out-Of-Band

(OOB) control-plane connection model within a sensor

network.

They developed an algorithm called Control Message

Quenching (CMQ) for OpenFlow to reduce the SDN

control overhead. In a study by De Oliveira et al. (2015),

the authors of TinySDN attempted to utilize an SDN to

establish a flexible solution for WSN and IoT

deployment, because an SDN-based centralized

controller could achieve node retasking and routing and

enable a better resource sharing and management

platform. They examined the TinySDN and IPv6 routing

protocol for LLNs (RPL) in terms of their routing

features, interoperability, and ability to support traditional

networks. The study only presented solutions to RPL

shortages in the context of SDN. Costanzo et al. (2012)

proposed SDNWN, an architectural framework that

highlights the impact of SDN in low-power WSN. They

presented the concept of utilizing protocol oblivious

forwarding (POF) as a key enabler for a highly flexible

and programmable SDN. It was demonstrated to

minimize the memory footprint and allow the flowtable

to match on bytes arrays and a packet index inside the

packet rather than being included in multiple flows for

specific packet types. Another SDWSN that seeked to

improve the traffic routing and WSN sensor

programmability was implemented and tested for IEEE

802.15.4 in the study by Galluccio et al. (2015). The aim

of an SDN solution for Wireless Sensor networks (SDN-

WISE) is to reduce the number of packets exchanged

between the SDN controller and the sensor nodes, as well

as to enable sensor nodes to be programmed as Finite

State Machine (FSM) for running different domains. The

SDN-WISE attempts to produce APIs that allow the

developers to use the programming languages of their

preference when they build SDN controllers.

The prototype of SDN-WISE was developed using a real

SDN controller and an Objective Modular Network

Testbed in C++ (OMNET++) simulator. The aim of their

system is to increase the elasticity of the network and

provide realization of network programmability. Lasso et

al. (2018) proposed a software-defined wireless sensor

network architecture based on 6LoWPAN networks (SD-

WSN6LO). Two main components were introduced in the

framework, namely an SDN sensor node and SDN

controller node. They demonstrated the result of power

consumption for their implementation in Contiki OS,

however, no details about the architecture and

implementation were presented. The work of Galluccio et

al. (2015) demonstrated how logical WSNs can coexist by

exploiting the same set of sensor nodes and how easy it is

to program the behavior of sensor nodes with a few lines

of code. Their system was compared with the state-of-art

SDN-WISE system in terms of reducing the number of

messages exchanged between the sensors and controllers.

Furthermore, the study provided a new method of

network virtualization called SDN-Visor, which allows

the creation of several virtual WSNs under different

controllers. The challenge of including SDN architecture

with a high associated cost into low-power sensor

networks is addressed in the study by Theodorou and

Mamatas (2017). The authors proposed to minimize the

amount of RPL control messages in SDN for an Internet

Protocol version 6 (IPv6)-based IEEE 802.15.4 network

through fine tuning the timer setting in RPL. The aim was

to provide the scalability and management for an SDN

protocol.

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 149

Saleh and Qadir: Downside of software-defined networking.

2.2.1. SDN controllers

The most important component in SDN is the controller,

which is the cornerstone of the architecture of SDN. The

main concept behind the controller is to manage the traffic

in underlying network devices by using a set of

instructions. A number of previous studies conducted a

partial performance evaluation for controllers (Zhao et al.,

2015; Rowshanrad et al., 2016; Asadollahi et al., 2017;

Asadollahi et al., 2018). The performance of 5 open

course controllers, namely Ryu (RYU), POX (POX),

NOX (NOX), Floodlight (Floodlight), and Beacon

(Beacon) was investigated in a study by Zhao et al. (2015)

using optimized configurations for each of the controllers.

Beacon was found to outperform the others in terms of

latency and throughput by having a low latency (0.1 ms)

and high throughput (1750 ms).

It also increased fairness. Rowshanrad et al. (2016)

evaluated the performance of controllers such as

Floodlight and OpenDaylight. They showed that

OpenDaylight performed better than Floodlight for low

and medium network loads in terms of latency, loss of

packets, and throughput. However, Floodlight performed

well with heavy network loads such as multimedia.

Previous studies recognized issues with the simulation

and emulation of SDN.

Asadollahi et al. (2017) introduced a linear topology to

evaluate the scalability and performance of a network by

emulating an Open Flow Network (OFNet) (OFNet) over

the Floodlight controller. The aim was to define the

performance metrics for the Floodlight controller.

However, Asadollahi et al. (2018) proposed a mesh

topology to evaluate the performance and scalability of a

Ryu controller. They performed various experiments

using the simulation tools Mininet, Ryu controller, and

iPerf (iperf). The objective of the study was to test the

scalability feature of the Ryu controller in the SDN

environment.

3. EVALUATION ENVIRONMENT

This paper evaluated the performance of SDN for

wireless communication using a simulation. A number of

different types of software, packages, and tools were used

for this purpose. The main components of our evaluation

platform are described in detail below.

3.1. Operating systems

Linux is a full open-source, UNIX-based system with a

large support community. It has immediate advantages

for developers and programmers who develop their own

tools, packages, and customized applications. Being an

open-source system, Linux has attracted the academic

community and researchers whose concerns in terms of

the ability to access and have full control over the

hardware and system libraries are best met by this system.

In this paper, Ubuntu, a flavor of Linux 12.04 LTS (64-

bit), was used as the operation system.

It was installed on a Lenovo-IdeaPad-Y510P Laptop with

an Intel Core i7-4700MQ processor with 7.7 gigabytes of

random access memory. In this environment, it was

unnecessary to install the Contiki platform because it was

included as part of the µSDN (Baddeley et al., 2018), a

low overhead SDN stack, and embedded in the SDN

controller for Contiki OS. However, it was necessary to

install compilers such as the 20-bit mspgcc compiler (20-

bit) and the precompiled MSP430-GCC version 4.7.3

(msp430). The reason for using the 20-bit mspgcc

compiler was to support up to 1 MB of memory.

Platforms such as Cooja and WiSMote are based on the

MSP430X series central processing unit (CPU) and

support more memory than the 64K address space.

3.2. Simulator

A simulator could be used as an alternative to simplify the

research environment. Cooja is an open-source simulator

that aids in the testing of protocols or applications on

emulated motes based on operating systems such as

TinyOS or Contiki OS (Dunkels et al., 2004). The main

feature of the Cooja network simulator is the ability to

simulate any number of platform sensor nodes

(Hendrawan & Arsa, 2017). It supports a set of standards

such as TR 1100, TI CC2420, Contiki RPL, IEEE

802.15.4, uIPv6 stack, and uIPv4 stack (Helkey et al.,

2016). All simulations in this work were tested in Cooja

using a Unit Disk Graph Medium (UDGM) distance loss.

The reason for using a simulated UDGM distance loss

radio environment is that it allows implementation and

testing of the new directional property of nodes. A node

can receive a packet from a sender only if it is within its

radius, which is defined by the transmission range.

3.3. SDN framework

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 150

Saleh and Qadir: Downside of software-defined networking.

An SDN standard for low-power wireless networks called

µSDN (Baddeley et al., 2018) was used for simulation in

this study. µSDN is a lightweight SDN architecture for

Contiki OS, which supports both IPv6 and

interoperability with distributed routing protocols such as

RPL, as well as optimizes the combination of a number of

overhead reduction functions to enhance the scalability

and mitigate the cost of the SDN within a low-power IoT

environment.

3.4. Simulation setup

We evaluated the performance of an implemented SDN

in a wireless network through simulation, presenting a

use-case scenario in which the SDN can be used within

low power, multihop wireless networks in order to

programmatically improve the QoS and show how a

CSMA-SDN can achieve significant reductions in delay.

The simulations were performed on an emulated

EXP5438 platform with a TI’s MSP430F5438 CPU and

CC2420 radio, with evaluation in the Cooja simulator for

the Contiki OS environment using a UDGM distance loss

model with the configuration parameters listed in Table

1.

Table 1: Cooja Simulators Parameters Setup

Cooja simulation parameters Setting

Simulation period 1 h

Radio environment UDGM with Distance Loss Model

Node transmission range 100 m

MAC layer CSMA

Transmitting nodes All

Receiving node controller

Number of nodes 20, 30, 40

Link quality 50%, 70%, 90%

Transmission data period 60–75 s

RPL mode Non-storing

RPL route lifetime 10 min

RPL default route lifetime ∞

µSDN flowtable lifetime 300 s

µSDN update period 180 s

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 151

Saleh and Qadir: Downside of software-defined networking.

A total of 30 random realizations of the SDN deployment

was run. Data from the Contiki logs were collected and

the characteristics of the network entries were analyzed

using Matlab.

The performance metrics included the end-to-end

application flow delay, PDR, DER, and ratio of network

traffic. All the performance metrics are described in Table

2.

Table 2: Performance Metrics

Metrics Description

End-to-end application delay It determines how the SDN overhead affects the application
traffic latency.

Packet Drop Ratio (PDR) The ratio of the number of lost application packets to the total
number of sent application packets.

Data Extraction Rate (DER) The ratio of received application messages to transmitted
application messages over a period of time.

Ratio of network traffic Ratio of application traffic, and SDN traffic in µSDN.

4. RESULTS AND DISCUSSION

The performance metrics of the SDN were investigated

for wireless networks in the following scenarios:

(1) End-to-End Delay: In this scenario, we measured the

overheads incurred by application messages and the end-

to-end latency. In this experiment, the network consisted

of 30 nodes with the maximum of 6 hops to the controller,

a transmission ratio (Tx) of 100%, and a reception (Rx)

ratio of 90% for each mesh node. In addition, the SDN

controller collected information from all the nodes every

60 seconds, which included node energy, node state, and

buffer congestion. Each simulation that was ran collected

data from the mesh node flowtable entities, which have a

300 second lifetime. The transmitting nodes sent data to

the sink every 60 to 75 seconds. It is clearly seen that there

is an increase in the delay with an increase in the number

of the hops. This is obviously because of the fact that

packets travel longer when increasing the number of hops

and every single node along the path needs to perform a

flowtable check for incoming packets, which

substantially contributes to the delay. This trend can be

observed in Figure 1, which shows the average of the end-

to-end application flow latency vs. the number of hops.

The results of the delay in this paper is corroborated by

the results of the delay in other papers (Baddeley et al.,

2018).

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 152

Saleh and Qadir: Downside of software-defined networking.

Figure 1. Average latency of application flow vs. hops for a 30-node network

(2) PDR: It refers to the ratio of the number of lost

application packets to the total number of sent application

packets. The PDR is computed with the help of the

formula presented below:

𝑃𝐷𝑅 =
Total sent packets− Total received packets

Total sent packets
 (1)

A total of 30 mesh nodes with a maximum of 6 hops in

which all the nodes need to participate in the SDN

controller, were used to evaluate the SDN reliability.

Figure 2 shows the PDR percentage for various hop

numbers in a 30-node network. The overall trend

indicated a higher percentage loss for packets that

traveled over more hops. Because packets are forwarded

by hops, there is high probability that packet loss will

occur because of congestion and MAC layer fails shortly

after initialization. In addition, because each node

forwards packets through an SRHI, they require a source

routing header, which needs to be received from the

controller. The reason for the high network activity is

because the FTQ/FTS messages are occasionally dropped

and, therefore, the application messages are lost.

However, this is not always the case as can be noticed in

the Figure 2 in which the PDR for 3 and 4 hops are less

than the PDRs for 2 hops.

Figure 2. Percentage of PDR vs. hops for a 30-node network

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 153

Saleh and Qadir: Downside of software-defined networking.

(3) DER: It is 1 of the performance metrics determined in

this study. It is defined as the ratio of the received packets

to the total number of packets transmitted by a mesh node

over a period of time. The formula for measuring the DER

is as follows:

𝐷𝐸𝑅 =
 𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 (2)

We evaluated this by running a simulation of the network

topology with a 20-, 30-, and 40-node mesh network over

1 to 15 hops with a 50%, 70%, and 90% link quality and

a transmission range of 100 m. The simulation was ran for

approximately 1 hour. DER is a value between 0 to 1: the

closer the value is to 1, the more effective the deployment

is. With an increase in the number of mesh nodes, the

DER drops, as can be seen in Figure 3. For example, for

a link quality of 50%, the DER is 0.45, 0.39, and 0.32 for

a network with 20, 30, and 40 nodes, respectively. The

DER, however, increases with a better-quality link. The

DER was calculated to be 0.45, 0.5, and 0.611 for a link

quality of 50%, 70%, and 90%, respective ly.

Figure 3. The DER for 20-, 30-, and 40-node topologies with a link quality of 50%, 70%, and 90%

(4) Analysis of the network traffic (user data and

overhead): one objective of this paper was to evaluate the

overheads introduced by using an SDN with overhead

reduction techniques to show the effect of mitigating the

cost of an SDN within a low power, multihop mesh

framework on the network performance. The network

traffic ratio can be determined by using the following

formula:

S𝐷𝑁 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑅𝑎𝑡𝑖𝑜 =
 𝑇𝑜𝑡𝑎𝑙 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝐴𝑝𝑝 𝑇𝑟𝑎𝑓𝑓𝑖𝑐

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐
 (3)

𝑈𝑠𝑒𝑟 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐−𝑇𝑜𝑡𝑎𝑙 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝐴𝑝𝑝 𝑇𝑟𝑎𝑓𝑓𝑖𝑐

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐
 (4)

The application ratio and the SDN traffic are shown in

Figure 4. The figure shows the network traffic for the user

packets and network overheads at different numbers of

nodes. The user packets refer to the application traffic,

whereas the network overheads refer to the type of SDN

packets such as CONF, FTQ, FTS, and NSU, which are

described in the SDN framework. The figure clearly

demonstrates higher traffic percentages for the user

packets when compared with that of the network

overheads for all considered network topology scenarios

(20, 30, and 40 nodes). It also shows high traffic

percentages for network overheads that are generated by

the SDN packets. This high traffic percentage for network

overheads places SDN in a challenging position, which

requires further study. For instance, the user packets and

network overhead percentages were found to be 57.31%

and 42.68%, respectively, for a 30-node scenario.

However, similar studies (Baddeley et al., 2018) reported

approximately 25% for user packets and 75% for network

overheads for the same network size.

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 154

Saleh and Qadir: Downside of software-defined networking.

Figure 4. Percentage of network traffic in an SDN network

5. CONCLUSION

In this paper, we applied the SDN concept to a wireless

network and evaluated its performance in terms of end-

to-end delay, PDR, DER, and the SDN overhead. We

used a lightweight SDN architecture designed for low-

power wireless communication, called µSDN, to

implement the SDN in the wireless environment in order

to programmatically improve the QoS. In this study, the

performance was evaluated using a Cooja simulator for

Contiki OS. In particular, we considered the end-to-end

delay, PDR, DER, and percentage of network traffic as

evaluation metrics of the performance of the SDN-based

wireless network. Our results indicated that increasing the

number of nodes causes a drop in the DER of about 0.45,

0.5, and 0.6 for a link quality of 50%, 70%, and 90%,

respectively. Finally, SDN simplifies the network

management and configuration, however, it adds a high

percentage of overhead to the network of about 43% in

comparison with 57% for the user packets. Further

investigation on the power consumption of the network is

required.

REFERENCES

20-bit, M. (n.d.). Retrieved from https://github.com/contiki-

os/contiki/wiki/MSP430X.

Anadiotis, A.-C., Galluccio, L., Milardo, S., Morabito, G. & Palazzo, S.

(2019). SD-WISE: A Software-Defined WIreless SEnsor network.

Computer Networks. doi:

https://doi.org/10.1016/j.comnet.2019.04.029

Asadollahi, S., Goswami, B. & Sameer, M. (2018, 2). Ryu controller's

scalability experiment on software defined networks. 2018 IEEE

International Conference on Current Trends in Advanced

Computing (ICCTAC), (pp. 1–5).

doi:10.1109/ICCTAC.2018.8370397

Asadollahi, S., Goswami, B., Raoufy, A. S. & Domingos, H. G. (2017,

12). Scalability of software defined network on floodlight controller

using OFNet. 2017 International Conference on Electrical,

Electronics, Communication, Computer, and Optimization

Techniques (ICEECCOT), (pp. 1–5).

doi:10.1109/ICEECCOT.2017.8284567

Baddeley, M., Nejabati, R., Oikonomou, G., Sooriyabandara, M. &

Simeonidou, D. (2018, 6). Evolving SDN for Low-Power IoT

Networks. 2018 4th IEEE Conference on Network Softwarization

and Workshops (NetSoft), (pp. 71–79).

doi:10.1109/NETSOFT.2018.8460125

Baddeley, M., Raza, U., Stanoev, A., Oikonomou, G. C., Nejabati, R.,

Sooriyabandara, M., & Simeonidou, D. (2019). Atomic-SDN: Is

Synchronous Flooding the Solution to Software-Defined

Networking in IoT? IEEE Access, 7, 96019-96034.

Beacon. (n.d.). Retrieved from

https://openflow.stanford.edu/display/Beacon

Costanzo, S., Galluccio, L., Morabito, G., & Palazzo, S. (2012, 10).

Software Defined Wireless Networks: Unbridling SDNs. 2012

European Workshop on Software Defined Networking, (pp. 1–6).

doi:10.1109/EWSDN.2012.12

de Oliveira, B. T., Alves, R. C., & Margi, C. B. (2015, 10). Software-

defined Wireless Sensor Networks and Internet of Things

standardization synergism. 2015 IEEE Conference on Standards

for Communications and Networking (CSCN), (pp. 60–65).

doi:10.1109/CSCN.2015.7390421

Dunkels, A., Gronvall, B. & Voigt, T. (2004, 11). Contiki - a lightweight

and flexible operating system for tiny networked sensors. 29th

Annual IEEE International Conference on Local Computer

Networks, (pp. 455–462). doi:10.1109/LCN.2004.38

El-Mougy, A., Ibnkahla, M., & Hegazy, L. (2015, 10). Software-defined

wireless network architectures for the Internet-of-Things. 2015

IEEE 40th Local Computer Networks Conference Workshops (LCN

Workshops), (pp. 804–811). doi:10.1109/LCNW.2015.7365931

Feamster, N., Rexford, J., & Zegura, E. (2014, 4). The Road to SDN: An

Intellectual History of Programmable Networks. SIGCOMM

Comput. Commun. Rev., 44, 87–98.

doi:10.1145/2602204.2602219

Floodlight. (n.d.). Retrieved from http://floodlight.openflowhub.org/

Galluccio, L., Milardo, S., Morabito, G. & Palazzo, S. (2015, 4).

Reprogramming Wireless Sensor Networks by using SDN-WISE:

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 155

https://github.com/contiki-os/contiki/wiki/MSP430X
https://github.com/contiki-os/contiki/wiki/MSP430X
https://doi.org/10.1016/j.comnet.2019.04.029
https://openflow.stanford.edu/display/Beacon
http://floodlight.openflowhub.org/

Saleh and Qadir: Downside of software-defined networking.

A hands-on demo. 2015 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), (pp. 19–20).

doi:10.1109/INFCOMW.2015.7179322

Galluccio, L., Milardo, S., Morabito, G. & Palazzo, S. (2015, 4). SDN-

WISE: Design, prototyping and experimentation of a stateful SDN

solution for WIreless SEnsor networks. 2015 IEEE Conference on

Computer Communications (INFOCOM), (pp. 513–521).

doi:10.1109/INFOCOM.2015.7218418

Ghaleb, B., Al-Dubai, A.Y., Ekonomou, E., Alsarhan, A., Nasser, Y.,

Mackenzie, L.M. & Boukerche, A. (2019). A Survey of Limitations

and Enhancements of the IPv6 Routing Protocol for Low-Power

and Lossy Networks: A Focus on Core Operations. IEEE

Communications Surveys Tutorials, 21, 1607–1635.

doi:10.1109/COMST.2018.2874356

Helkey, J., Holder, L., & Shirazi, B. (2016). Comparison of simulators for

assessing the ability to sustain wireless sensor networks using

dynamic network reconfiguration. Sustainable Computing:

Informatics and Systems, 9, 1–7.

doi:https://doi.org/10.1016/j.suscom.2016.01.003

Hendrawan, I. N. & Arsa, I. G. (2017, 11). Zolertia Z1 energy usage

simulation with Cooja simulator. 2017 1st International Conference

on Informatics and Computational Sciences (ICICoS), (pp. 147–

152). doi:10.1109/ICICOS.2017.8276353

iperf. (n.d.). Retrieved from https://iperf.fr/.

Jian, D., Chunxiu, X., Muqing, W., & Wenxing, L. (2017, 12). Design and

implementation of a novel software-defined wireless sensor

network. 2017 3rd IEEE International Conference on Computer

and Communications (ICCC), (pp. 729–733).

doi:10.1109/CompComm.2017.8322639

Lasso, F. F., Clarke, K., & Nirmalathas, A. (2018, 4). A software-defined

networking framework for IoT based on 6LoWPAN. 2018 Wireless

Telecommunications Symposium (WTS), (pp. 1–7).

doi:10.1109/WTS.2018.8363938

Luo, T., Tan, H., & Quek, T. Q. (2012, 11). Sensor OpenFlow: Enabling

Software-Defined Wireless Sensor Networks. IEEE

Communications Letters, 16, 1896–1899.

doi:10.1109/LCOMM.2012.092812.121712

Miguel, M., Jamhour, E., Pellenz, M., & Penna, M. (2018, 11). SDN

architecture for 6LoWPAN wireless sensor networks. Sensors, 18,

3738. doi:10.3390/s18113738

msp430. (n.d.). Retrieved from https://github.com/pksec/msp430-gcc-

4.7.3

Nikoukar, A., Raza, S., Poole, A., Güneş, M., & Dezfouli, B. (2018). Low-

Power Wireless for the Internet of Things: Standards and

Applications. IEEE Access, 6, 67893–67926.

doi:10.1109/ACCESS.2018.2879189

NOX. (n.d.). Retrieved from https://github.com/noxrepo/nox.

OFNet. (n.d.). Retrieved from http://sdninsights.org/.

Ominike, A., Seun, E., A. O., A., & Osisanwo, F. (2016, 12). Introduction

to Software Defined Networks (SDN). International Journal of

Applied Information Systems, 11, 10–14.

doi:10.5120/ijais2016451623

POX. (n.d.). Retrieved from http://www.noxrepo.org/pox/about-pox/.

Rowshanrad, S., Abdi, V. & Keshtgari, M. (2016, 11). Performance

evaluation OF SDN controllers: Floodlight and Openday Light.

IIUM Engineering Journal, 17, 47–57.

doi:10.31436/iiumej.v17i2.615

Ryu. (n.d.). Retrieved from http://sdnhub.org/tutorials/ryu/

Theodorou, T., & Mamatas, L. (2017, 11). CORAL-SDN: A software-

defined networking solution for the Internet of Things. 2017 IEEE

Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN), (pp. 1–2). doi:10.1109/NFV-

SDN.2017.8169870

Xia, W., Wen, Y., Foh, C., Niyato, D., & Xie, H. (2015, 1). A Survey on

Software-Defined Networking. Communications Surveys &

Tutorials, IEEE, 17, 27–51. doi:10.1109/COMST.2014.2330903

Zhao, Y., Iannone, L., & Riguidel, M. (2015, 11). On the performance of

SDN controllers: A reality check. 2015 IEEE Conference on

Network Function Virtualization and Software Defined Network

(NFV-SDN), (pp. 79–85). doi:10.1109/NFV-SDN.2015.7387

UKH Journal of Science and Engineering | Volume 4 • Number 2 • 2020 156

https://doi.org/10.1016/j.suscom.2016.01.003
https://iperf.fr/
https://github.com/pksec/msp430-gcc-4.7.3
https://github.com/pksec/msp430-gcc-4.7.3
https://github.com/noxrepo/nox
http://sdninsights.org/
http://www.noxrepo.org/pox/about-pox/
http://sdnhub.org/tutorials/ryu/

