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1. Introduction 
The growing attention of many researchers recently on flow and heat transfer of a viscous and incompressible fluid 
flowing through an elongating surface is because of its numerous engineering applications, especially in industry and 
manufacturing processes. For example, glass fibre production, paper production, extrusion of polymers, refrigeration, 
cooling of electronic equipment, copper wires drawing, and crude oil purification. To obtain the production quality for 
such processes, the heat transfer, and the flow field are highly needed. Various researchers recently are engaged in using 
the non-Newtonian heat transfer characteristics flowing through a stretching sheet. In 1970, Crane was the first author 
to work on the flow of fluid over a stretching sheet with linear order. In the work, the steady-state similarity solution 
was obtained. Mahapatra & Gupta in 2001 studied an incompressible viscous electrically conducting fluid past a 
stretching sheet. The influence of variable thermal conductivity and heat source on MHD boundary layer flow of 
electrically conducting fluid is investigated by (Alsedais, 2017). It was found that at A = 2.0 the skin-friction at the 
surface increases and decreases at A = 2.0 with an increase in the Casson parameter. Zaimi & Ishak in 2016 reported 
the slip effects on stagnation-point flow through a stretching vertical sheet. 
  Pavlov in 1974 considered the influence of the external magnetic field in the hydromagnetic flow over a stretching 
sheet. Bhattacharyya & Layek in 2010 investigated the effect of suction/blowing on hydromagnetic boundary layer flow 
over a permeable stretching sheet. 
  The influence of chemical reaction on slip flow of magnetohydrodynamic heat and mass Casson fluid over a stretching 
sheet is analyzed by Kumar & Gangadhar in 2015 and it was observed that the reduction of some parameters such as 
magnetic and momentum slip reduce the fluid flow. Rao & Sreenadh in 2017 studied the exponentially inclined 
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Abstract 
Influence of slip and inclined magnetic field on stagnation-point flow with chemical reaction are studied. 
Implementation of the similarity transformations, transformed the fluid non-linear ordinary differential equations 
and numerical computation is performed to solve those equations using Spectral Collocation Method. Various 
pertinent parameters on fluid flow, temperature and concentration distributions of the Casson nanofluid flow as 
well as the local skin friction coefficient, local Nusselt number, and Sherwood number are graphically displayed. The 
results indicate that thermophoresis parameter N_t enhanced the temperature and nanoparticle concentration 
profiles, because a rise in thermophoresis parameter enhances the thermophoresis force within the flow regime. 
Values of both local Nusselt and Sherwood numbers are enhanced with an increase in Hartman number (magnetic 
field parameter). The present results are compared with previously reported ones and are found to be in excellent 
agreement. 
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permeable flow of a Casson fluid. The result shows that temperature distribution reduces as Prandtl number, thermal 
slip factor, suction parameter increase and enhances with radiation parameter, Eckert number, and Magnetic parameter. 
Soid and Ishak et al. in 2009 studied MHD stagnation point flow over a stretching/shrinking sheet (Fang et al., 
2009 )obtained the exact solution on the magnetohydrodynamic flow and mass transfer with slip condition through a 
stretching sheet.  
  Nanofluids are gaining more attention from many researchers today because of its significant applications of enhancing 
fluid transfer performance properties, particularly concerning heat transfer Choi & Eastman in 1995 were the first author 
to introduce the concept of Nanofluid where he proposed the suspension of nanoparticles. The suspension of particles 
such as metals, metals oxides, carbides, nitrides, carbon, and nanotubes are dispersed in a continuous medium (base 
fluids) such as water, ethylene, glycol, and engine oil of size less than 100nm is known as Nanofluids. After Choi, many 
authors worked on Nanofluids and Casson Nanofluids. Meraj & Junaid in 2015 studied hydromagnetic Casson nanofluid 
through a non-linearly stretching sheet, it was reported that Brownian motion does not have an impact on fluid 
temperature and heat transfer rate from the sheet while both temperature and nanoparticle volume fraction are 
decreasing functions of thermophoresis parameters. The hydromagnetic chemically reactive nanofluid flow past a 
permeable flat plate in a porous medium was investigated by Reddy et al. in 2016. Analytic and numeric solutions were 
examined by Awais et al. in 2015. It was observed that a rise in the magnetic field parameter results in a decrease in fluid 
particles inter-molecular movement which leads to an enhancement of fluid temperature. Also, the presence of a heat 
source in a system can enhance the temperature whereas a heat sink causes a decrease in temperature. The 
hydromagnetic and heat transfer flow of Williamson nanofluid through a stretching sheet with variable thickness and 
the variable thermal conductivity were presented in Reddy et al. in 2017. Nageeb et al. studied the unsteady free 
convective hydromagnetic chemically reactive boundary-layer flow of nanofluid over-stretching surfaces using the 
spectral relaxation method (Haroun et al., 2015). Mohamed and Afify investigated chemically reactive Casson Nanofluid 
flow through stretching sheet with slip boundary condition, viscous dissipation in (Afify, 2017). 
  In this paper, the work of Afify (Haroun et al., 2015) is extended by including stagnation point, heat generation, and 
the effect of inclined magnetic field on the problem of the steady Casson nanofluid flowing over a stretching sheet. 

2. Mathematical Analysis 
We analyzed the steady two-dimensional incompressible flow of electrically conducting and chemically reactive Casson 

nanofluid bounded by a stretching sheet at 𝑦 = 0, with the flow being confined in 𝑦 > 0. 𝑢𝑤 = 𝑏𝑥 is the stretched 

linear velocity where b is the positive constant. The strength of the inclined magnetic field is 𝐵𝑜, and here 𝑇∞𝑎𝑛𝑑 𝐶∞ 

are the ambient temperature and nanoparticle concentration fields with 𝑇∞ > 𝑇𝑤 . Thermophoresis and Brownian 
motion of nanoparticles are taken into consideration. The rheological equation of state of an isotropic and 
incompressible flow of Casson fluid is given by (Haroun et al., 2015): 

                    𝜏𝑖𝑗 =  {
(𝜇𝐵 +

𝑝𝑦

√2𝜋
) 2𝑒𝑖𝑗 ,      𝜋 > 𝜋𝑐

(𝜇𝐵 +
𝑝𝑦

√2𝜋𝑐
) 2𝑒𝑖𝑗 ,      𝜋 < 𝜋𝑐

                                                               (1) 

where 𝜇𝐷 is the plastic dynamic viscosity of the non-Newtonian fluid, 𝑝𝑦 is the yield stress of fluid, 𝜋 is the product of 

the component of deformation rate with itself, namely, 𝜋 = 𝑒𝑖𝑗𝑒𝑖𝑗 , 𝑒𝑖𝑗 is the (𝑖, 𝑗)𝑡ℎcomponent of the deformation rate 

and 𝜋𝑐 is the critical value of 𝜋 based on the non-Newtonian model. The governing equations of momentum, energy, 
and mass are: 

        
𝜕𝑢

𝜕𝑥
+  

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                           (2) 

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈

𝑑𝑈

𝑑𝑥
+ 𝑣 (1 +  

1

𝛽
)

𝜕2𝑢

𝜕𝑦2
+  

𝜎𝐵𝑜
2

𝜌
 (𝑈 − 𝑢) sin2 𝜑                                                   (3) 

 

                      𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=  

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2
+ 𝜏 [𝐷𝐵  (

𝜕𝐶

𝜕𝑦
 
𝜕𝑇

𝜕𝑦
) +

𝐷𝑇

𝑇∞
  (

𝜕𝑇

𝜕𝑦
)

2

] +
𝜇

𝜌𝐶𝑝
 (1 +  

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)

2

 

+
𝜎𝐵𝑜

2

𝜌𝐶𝑝
 (𝑈 − 𝑢)2 sin2 𝜑                  (4) 
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𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
− 𝐾𝑜(𝐶 − 𝐶∞)                                                                                          (5) 

With the given boundary conditions: 

                                                     𝑢 = 𝑢𝑤 + (1 +  
1

𝛽
) 𝑁 𝜌𝑣

𝜕𝑢

𝜕𝑦
, 

𝑣 = 0, 𝑇 = 𝑇𝑤 + 𝐾1

𝜕𝑇

𝜕𝑦
,   𝐶 = 𝐶𝑤 + 𝐾2

𝜕𝐶

𝜕𝑦
,          𝑎𝑡  𝑦 = 0, 

           𝑢 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞,     𝑎𝑠       𝑦 → ∞                                                       (6) 

In this work, the induced magnetic field is ignored. Consider the following dimensionless transformations 

𝜂 = (
𝑏

υ
)

1

2
𝑦,   𝜓(𝑥, 𝑦) = (𝑏υ)

1

2 𝑥𝑓(𝜂),     𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,   ϕ(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
                             (7)                            

Using the stream function 𝜓(𝑥, 𝑦) such that 

                                     𝑢 =
𝜕𝜓

𝜕𝑦
,   𝑣 = −

𝜕𝜓

𝜕𝑥
                                                                                                                (8)  

Therefore the equation (2) is satisfied. From the given transformations mentioned above, 3 to 6 become 

 (1 +  
1

𝛽
) 𝑓′′′(𝜂) + 𝑓(𝜂)𝑓′′(𝜂) − (𝑓′(𝜂))

2
+ 𝐻𝑎(𝐴 − 𝑓′(𝜂)) sin2 𝜑 + 𝐴2 = 0                                      (9) 

 
1

𝑃𝑟
𝜃′′(𝜂) + 𝑓𝜃′(𝜂) + 𝑁𝑡ϕ′(𝜂)θ′(𝜂) + 𝑁𝑡(θ′(𝜂))2 + (1 +  

1

𝛽
) 𝐸𝑐(𝑓′′(𝜂))

2
 

+𝐻𝑎𝐸𝑐(𝐴 − 𝑓′(𝜂))
2

sin2 𝜑 + 𝑄𝜃(𝜂) = 0          (10) 

    ϕ′′(𝜂) + Le𝑓ϕ′(𝜂) +
𝑁𝑡

𝑁𝑏
𝜃′′(𝜂) − 𝐿𝑒χϕ(𝜂) = 0                                                                                      (11) 

                                        𝑓(0) = 0, 𝑓′(0) = 1 + 𝜆 (1 +  
1

𝛽
) 𝑓′′(0), 

                                     θ(0) = 1 + γθ′(0),    ϕ(0) = 1 + δϕ′(0) 

 𝑓′(∞) = 0, 𝜃(∞) = 0, ϕ(∞) = 0                                                                                      (12)  

Here prime represents differentiation with respect to 𝜂. The flow parameters are defined as below: 

𝑃𝑟 =
𝑣

𝛼
 , 𝐿𝑒 =

𝑣

𝐷𝐵
, 𝜆 = 𝑁𝜌(𝑣𝑏)

1
2, γ = 𝐾1 (

𝑏

𝑣
)

1
2

, χ =
𝐾𝑜

𝑏
,  

𝐸𝑐 =
𝑢2

𝑤

𝑐𝑝(𝑇𝑤 − 𝑇∞)
, 𝛿 = 𝐾2 (

𝑏

𝑣
)

1
2

, 𝑁𝑏 =
(𝜌𝑐)𝑝𝐷𝐵(𝐶𝑤 − 𝐶∞)

(𝜌𝑐)𝑓𝑣
,   

   𝑁𝑡 =
(𝜌𝑐)𝑝𝐷𝑇(𝑇𝑤 − 𝑇∞)

(𝜌𝑐)𝑓𝑣𝑇∞
,    𝐻𝑎 =

𝜎𝐵𝑜
2

𝜌𝑏
                                                                    (13) 

The physical quantities of engineering interest are the Skin friction coefficient (rate of shear stress), the Nusselt number 
(rate of heat transfer), and the Sherwood number (rate of mass transfer). 

The local Skin-friction 𝐶𝑓𝑥, local Nusselt Number 𝑁𝑢𝑥 ,  and local Sherwood Number 𝑆ℎ𝑥 which are defined as 

 𝐶𝑓𝑥 =
𝜏𝑤

𝜌𝑢2
𝑤

, 𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
, 𝑆ℎ𝑥 =  

𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤 − 𝐶∞)
                                    (14) 

𝜏𝑤 = (𝜇𝐵 +
𝑝𝑦

√2𝜋𝑐

) (
𝜕𝑢

𝜕𝑦
)

𝑦=0

, 𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)

𝑦=0

, 𝑞𝑚 =   −𝐷𝐵 (
𝜕𝐶

𝜕𝑦
)

𝑦=0

                           (15) 
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In terms of dimensionless quantities (14) we have 

   𝑅𝑒𝑥
1

2⁄ 𝐶𝑓 = (1 +  
1

𝛽
) 𝑓′′(0),

𝑁𝑢

𝑅𝑒𝑥
1

2⁄
= −𝜃′(0)    ,

𝑆ℎ𝑥

𝑅𝑒𝑥
1

2⁄
= −ϕ′(0),                           (16)   

where 𝑅𝑒𝑥 =
𝑥𝑢𝑤

𝑣
 is the local Reynolds number. 

3. Numerical Solution 
The systems of nonlinear differential equations (9-11) parallel to the boundary conditions (12) are solved numerically 

using the Chebyshev spectral collocation method. In this method, the unknown functions, 𝑓(𝜂), 𝜃(𝜂)𝑎𝑛𝑑 ϕ(𝜂) is 

approximated by the sum of the basic functions 𝑇𝑛(𝜂) (Shen et al., 2011; Sun et al., 2012). 

                  𝑓(𝜂) = ∑ 𝑎𝑛𝑇𝑛(𝜂)                                                                                                       (17)   

𝑁

𝑛=𝑜

 

               𝜃(𝜉) = ∑ 𝑏𝑛𝑇𝑛(𝜂)

𝑁

𝑛=0

                                                                                                        (18)  

              ϕ(𝜂) = ∑ 𝑐𝑛𝑇𝑛(𝜂)

𝑁

𝑛=0

                                                                                                        (19)  

The basic functions are taken as the Chebyshev polynomials, in (17), (18), and (19) which defined in the interval −1 ≤
𝜂 ≤ 1 as 

  𝑇𝑛(𝜂) = cos(𝑁 cos−1 𝜂)                                                                               (20) 

𝑎𝑛, 𝑏𝑛𝑎𝑛𝑑 𝑐𝑛  are unknown constant to be obtained. [𝑜, ∞] is the considered flow problem domain, which transformed 

into the [−1,1] of the definition of basis functions, by using the below transformation 

  𝜂 =
2𝑝

𝑝∞ − 1
                                                                                                         (21) 

where 𝜂∞ denotes the edge of the boundary layer, by substituting (17), (18), and (19) into (9-11), non-zero residuals 

were obtained. The coefficient 𝑎𝑛,𝑏𝑛 and 𝑐𝑛 were chosen in such a way that the obtained residues were minimized 
throughout the domain. 

Table 1 shows the Comparison of results for  −θ′ (0) and − ∅′ (0) with Nt, Nb 𝜆 and  Ec for β = 0.5, λ = y = δ = 0.2, 
Pr = 4, Le = 5 and A = Q = H = 0. 

Table 1. shows the Comparison of results for  〖-θ〗^'  (0)  and 〖- ∅〗^'  (0)  with Nt, Nb λ and  Ec for β = 0.5, λ 
= y = δ = 0.2, Pr = 4, Le = 5 and A = Q = H = 0. 

Nt Nb λ Ec 
Ahmed and Afify 

−θ′ (0)[16 ] 
Present results 

−θ′ (0) 

Ahmed and Afify 

− ∅′ (0) (Haroun et 
al., 2015) 

Present results 

− ∅′ (0) 

0.1 0.1 0.2 0.2 0.655854 0.654296 1.19213 1.19232 

0.3 0.1 0.2 0.2 0.510010 0.508726 1.22598 1.22667 

0.5 0.1 0.2 0.2 0.394448 0.393369 1.45703 1.45778 

0.1 0.2 0.2 0.2 0.550359 0.551452 1.27665 1.27465 

0.1 0.4 0.2 0.2 0.371446 0.371348 1.31245 1.30315 

0.1 0.6 0.2 0.2 0.235575 0.235684 1.31891 1.31663 

0.1 0.1 - 0.2 0.2 0.664530 0.66554 0.637467 0.636539 

0.1 0.1 0.0 0.2 0.659002 0.658105 0.961861 0.960761 

0.1 0.1 0.4 0.2 0.654009 0.653702 1.367830 1.366820 

0.1 0.1 0.2 0.0 0.795783 0.794862 1.113521 1.112604 

0.1 0.1 0.2 1.0 0.082093 0.083140 1.515737 1.516703 

0.1 0.1 0.2 1.3 - 0.139103 - 0.138211 1.641030 1.640031 
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Figure 1. Effect of 𝜆 𝑜𝑛 𝑓′′(𝜂). Figure 2. Effect of 𝜆 𝑜𝑛 𝑓′(𝜂). 
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Figure 3. Effect of 𝜆 𝑜𝑛 𝜃(𝜂). Figure 4. Effect of 𝜆 𝑜𝑛 𝜙(𝜂). 

Figure 5. Effect of 𝛾 𝑜𝑛 𝜃(𝜂). Figure 6. Effect of 𝛾 𝑜𝑛 𝜙(𝜂). 
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Figure 7. Effect of 𝛿 𝑜𝑛 𝜃(𝜂). Figure 8. Effect of  Nt on θ(η). 

Figure 9. Effect of 𝑁𝑡𝑜𝑛 𝜙(𝜂). Figure 10. Effect of 𝑁𝑏 𝑜𝑛 𝜃(𝜂). 

F igure 11. Effect of 𝑁𝑏 𝑜𝑛 𝜙(𝜂). Figure 12. Effect of X on ϕ(η) for  Nb = 0.1. 
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Figure 13. Effect of 𝑋 𝑜𝑛 𝜙(𝜂)𝑓𝑜𝑟 𝑁𝑏 = 0.5. Figure 14. Effect of 𝑋 𝑜𝑛 𝜙(𝜂)𝑓𝑜𝑟 𝑁𝑡 = 0.5. 

Figure 15. Effect of 𝑋 𝑜𝑛 𝜙(𝜂)𝑓𝑜𝑟  𝑁𝑡 = 0.1. Figure 16. Effect of  𝑁𝑡𝑜𝑛 𝜃(𝜂)𝑓𝑜𝑟 𝐿𝑒 = 1. 

Figure 17. Effect of 𝑁𝑡  𝑜𝑛 𝜙(𝜂)𝑓𝑜𝑟 𝐿𝑒 = 1. Figure 18. Effect of  𝑁𝑡𝑜𝑛 𝜃(𝜂)𝑓𝑜𝑟 𝐿𝑒 = 5. 
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Figure 19. Effect of 𝑁𝑡  𝑜𝑛 𝜙(𝜂)𝑓𝑜𝑟 𝐿𝑒 = 5. Figure 20. Effect of  Nb on θ(η)for Le = 1. 

Figure 21. Effect of 𝑁𝑏 𝑜𝑛 𝜃(𝜂)𝑓𝑜𝑟 𝐿𝑒 = 1. Figure 22. Effect of Nb on θ(η)for Le = 5. 

Figure 23. Effect of  𝑁𝑏 𝑜𝑛 𝜙(𝜂)𝑓𝑜𝑟 𝑁𝑏 = 5. Figure 24. Effect of  Ec on θ(η). 
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Figure 25. Effect of 𝑄 𝑜𝑛 𝜃(𝜂). Figure 26. Effect of 𝛽 𝑜𝑛 𝑓′(𝜂). 

Figure 27. Effect of 𝐴 𝑜𝑛 𝑓′′(𝜂). Figure 28. Effect of A on f′(η). 
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Figure 31. Effect of 𝑁𝑏𝑎𝑛𝑑 𝜆 − 𝜙′(𝜂). Figure 32. Effect of Nband Ha − θ(η). 

Figure 33. Effect of 𝑁𝑏 𝑎𝑛𝑑 𝐻𝑎 − 𝜙′(𝜂). Figure 34. Effect of Hb and A − θ′(η). 

Figure 35: Effect of 𝐻𝑏 𝑎𝑛𝑑 𝐴 − 𝜙(𝜂) 
Figure 36: Effect of 𝐴 𝑎𝑛𝑑 𝐻𝑎 𝑜𝑛 (

1

𝛽
+ 1) 𝑓′′(0) 
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4. Results and Discussion 
The numerical solutions are obtained for velocity, temperature, and nanoparticle concentration profiles for various 

values of physical parameters, such as the slip parameter (𝜆), the thermal slip parameter (γ), the concentration slip 

parameter (δ), the thermophoresis parameter (𝑁𝑡), the Brownian motion (𝑁𝑏), the chemical reaction parameter (χ), the 

velocity ratio parameter (A), the heat generation parameter (Q), the Eckert number (Ec), the Casson parameter (𝛽), the 

Lewis number (Le) and the Hartman number (𝐻𝑎). The results obtained are presented pictorially in figures 1- 34 for 
dimensionless velocity, dimensionless temperature, and dimensionless nanoparticle concentration profiles respectively. 

We compared our result with that of Ahmed and Afify (Haroun et al., 2015) by neglecting the effects of  𝐻𝑎, Q and A. 
The comparison shows good agreement as presented in Tables 1. 

  Figures 1-4 displayed the effects of (𝜆) on the fluid flow, the magnitude of the skin friction coefficient,𝑓′′(𝜂), the 

temperature, 𝜃, and the nanoparticle concentration, ϕ profiles. It is observed that an increase in the slip parameter 
decreases the velocity of the fluid profile and the skin friction coefficient because the high value of the slip parameter 
corresponds to a reduction in the surface of skin friction while the increase in slip parameter increases both the 
temperature and nanoparticle concentration profiles. The effects of the thermal slip parameter on the temperature and 
nanoparticle concentration profiles are depicted in Figures 5 and 6 it is noteworthy that an increase in the thermal slip 
parameter reduces the thermal boundary layer and nanoparticle concentration distribution. Because heat transfer within 
the boundary layer fluid reduces with the enhancement of the thermal slip parameter. Figure 7 represents the effects of 
the concentration profile and it observed that the nanoparticle concentration decrease with an increased concentration 
slip parameter. A rise in temperature and nanoparticle concentration profiles is noticed in Figures 8 and 9. The impacts 
of the Brownian motion parameter on heat flow and the nanoparticle concentration distributions are presented 
graphically in figures 10 and 11. It is observed that the heat flow increase with an increase in the Brownian motion 
parameter, while the nanoparticle concentration profile decreases. 

  The dimensionless nanoparticle concentration profiles for various values of χ, 𝑁𝑏 𝑎𝑛𝑑 𝑁𝑡 are exhibited in figures 12-
15 respectively, and the nanoparticle concentration profiles reduce with a rise in chemical reaction for different values 

of 𝑁𝑏 𝑎𝑛𝑑 𝑁𝑡 . Figures 16-23, displayed graphical representative of temperature and nanoparticle concentration 

distributions for various values of 𝑁𝑏 , 𝑁𝑡  𝑎𝑛𝑑 𝐿𝑒.  Both the temperature and nanoparticle concentration profiles 

increase with an increase in 𝑁𝑏 𝑎𝑛𝑑 𝑁𝑡 when Lewis number is 1 or 5 in figures 16 -20, while the reverse is the case in 
figures 21-23 with the same value of Lewis number. The influence of Eckert number and heat generation parameters 
on the temperature profiles within the boundary layer region is shown in figures 24 and 25 and it is understood that the 
temperature profile increased with an increase in the Eckert number. This happened due to viscous heating, the increase 
in the fluid temperature is enhanced and appreciable for higher values of Eckert number. Physically, Eckert's number 
relates the kinetic energy to the enthalpy of a fluid, while an increase in heat generation leads to an increase in the 
temperature throughout the entire boundary layer in figure 25. The heat generation does not only increase the 
temperature of the fluid but also increases the thermal bounder layer thickness. Figure 26 present the influence of the 
Casson parameter on the velocity profile and it is worthwhile to note that the velocity profile decreases with an increase 

in the values of 𝛽 𝑓𝑜𝑟 𝐿𝑒 = 5 𝑎𝑛𝑑 𝑃𝑟 = 4. From figure 27 and 28, the effects of velocity ratio parameter on the 
magnitude of the skin friction coefficient and the temperature profiles are presented, it is noticed from figure 27 that 
the magnitude of the skin friction profile increases with an increase in velocity ratio parameter near the wall, whereas 
the reverse trend is observed far away from the wall, while the increase in velocity ratio parameter decreased the 

temperature profile in figure 28. Figure 29 is plotted to see the behavior of Hartman number 𝐻𝑎 on the temperature 

profile and it is seen that temperature profile increases by increasing the value of 𝐻𝑎. Figures 30-31 represent the effect 

of slip parameter 𝜆 and Brownian motion 𝑁𝑏 on local Nusselt number−𝜃′(0) 𝑎𝑛𝑑 − 𝜙′(0), while an increase in 𝜆 
reduces the local Nusselt number and the reverse case is noticed in Sherwood number. Figures 32-33, are depicted to 

see the behavior of Brownian motion and Hartman number on both −𝜃′(0) 𝑎𝑛𝑑 − 𝜙′(0), and it can be seen from the 
graphs that there is a decrease in local Nusselt number and an increase in Sherwood number with an increase in the 
value of the Brownian motion parameter. Effect of Hartman and velocity ratio parameters are depicted in figures 34-
35, and both local Nusselt and Sherwood numbers increase with an increase in Hartman number, while figure 36 
represents the effect of velocity ratio on the magnitude of the skin friction coefficient and rise in velocity ratio leads to 
an increase the skin friction coefficient. 

5. Conclusions 
Two-dimensional flow of stagnation point heat flow and mass transfer in a Casson Nanofluid with thermodiffusion and 
an inclined magnetic field is considered and the numerical computation is performed via the Spectral Collocation 
Method. From the study, we analyzed that rise in the thermophoresis parameter enhances both the temperature and 
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nanoparticle concentration profiles, while the velocity profile decreases with an increase in the Casson parameter. The 
increase in the magnetic parameter enhances the temperature and nanoparticle concentration profiles. 
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