

UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022 12

Aspect Oriented Programming: Trends and Applications

Shko Muhammed Qader1,3a*, Bryar A. Hassan2b, Hawkar Omar Ahmed 1,4c, Hozan Khalid Hamarashid

3,d
1 Department of Information Technology, University College of Goizha, Sulaymaniyah, Kurdistan Region, Iraq
2 Department of Information Technology, Kurdistan Institution for Strategic Studies and Scientific Research (KISSR),
Sulaymaniyah, Kurdistan Region, Iraq
3 Information Technology Department, Computer Science Institute, Sulaimani Polytechnic University, Sulaymaniyah,
Kurdistan Region, Iraq
4 Department of Information Technology, College of Commerce, University of Sulaimani, Sulaymaniyah, Kurdistan
Region, Iraq
E-mail:ashko.qader@spu.edu.iq,bbryar.hassan@kissr.edu.krd,chawkar.omar@univsul.edu.iq, dhozan.khalid@spu.edu.iq

Access this article online

Received on: 23 September 2021 Accepted on: 18 April 2022 Published on: 30 June 2022

DOI: 10.25079/ukhjse.v6n1y2022.pp12-20 E-ISSN: 2520-7792

Copyright © 2022 Qader et al. This is an open access article with Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (CC BY-NC-ND
4.0).

1. Introduction and Background
Since the inception of programming languages, a multitude of programming paradigms have been established in response
to technological advancements. Nowadays, the complexity of software increased, manufacturers were forced to broaden
and adapt their methods to emerging difficulties. As a consequence of the emergence of programming languages,
prototypes of procedural and object-oriented programming (OOP) have been built. Of the ongoing innovation that has
happened in order for them to stay competitive. In recent years, OOP has established itself as the primary technique for
writing successful structure-oriented code. In comparison to OOP, AOP is a relatively recent technique that has made
substantial advancements (Zhang, 2011). According to (Rademacher et al., 2019), their study demonstrates that OOP may

Research Article

Abstract
The competitive advantage of aspect oriented programming (AOP) is that it improves the maintainability and
understandability of software systems by modularizing crosscutting concerns. However, some concerns, such as
logging or debugging, may be overlooked and should be entangled and distributed across the code base. AOP is a
software development paradigm that enables developers to capture crosscutting concerns in split-aspect modes.
Additionally, it is a novel notion that has the potential to improve the quality of software programs by removing the
complexity involved with the production of code tangles via the usage of separation of concerns. As a result, it
provides more modularity. Throughout its early development, some believed that AOP was easier to build and
maintain than other implementations since it was based on an existing one. The statements are predicated on the
premise that local improvements are easier to implement. Additionally, without appropriate visualization tools for
both static and dynamic structures, cross-cutting challenges may be difficult for developers and researchers to
appreciate. In recent years, AspectJ has begun to enable the depiction of crosscutting concerns via the release of IDE
plugins. This article explains aspect oriented programming and how it may be used to improve the readability and
maintainability of software projects. Additionally, it will evaluate the challenges it presents to application developers
and academics.

Keywords: Aspect Oriented Programming, AOP, Logging, Cross Cutting Concerns, Join Points, Point Cut.

UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022 13

fundamentally aid software engineering by providing a better match for the programming challenge through the core
object model. However, AOP complements OOP by introducing a novel approach to program structuring. Enable Apart
from classes, it provides features that facilitate the modularization of concerns. For instance, transaction management
may be applied to a variety of different kinds of objects (Lau et al., 2018). Additionally, it is an innovative software design
and implementation approach proposed by Xerox PARC experts (Lemos et al., 2006). Furthermore, the AOP divides the
process into two components: the base program and the aspect program.
The base code contains the essential aspects of the system, and object oriented programming may be implemented.
Additionally, the aspect program incorporates cross-cutting characteristics via the use of modularization in addition to
the basic software programming (Beneken et al., 2005). The latest generation of AOP technology is distinct from
technology that is more organized for more effective design and coding. This division may be necessary to show the
creators' desire to think about it. Additionally, one of the benefits of AOP is that it is built on current technologies and
may provide additional mechanisms for influencing the development of systems in a cross-cutting issue manner. One
aspect is capable of assisting in the deployment of a range of activities, components, or objects. It might be homogenous
or heterogeneous. For example, while leveraging the homogeneous feature, logging behavior should take specific
processes into consideration. By contrast, heterogeneity may be used to implement both sides of a protocol between two
distinct classes.
In contrast to previous separation of concerns approaches, AOP's primary goal is to build more modular architectures
and code; the majority of concerns are localized rather than distributed. A well-defined interface enables reasoning about
a range of issues in relative isolation. Thus, they become (un)pluggable and customizable via independent development
(Alshareef et al., 2020). This article will provide an introduction of aspect-oriented programming and explain the notion
of a common set of important terminology. Additionally, the possibility for increased software application comprehension
and maintainability will be highlighted. Additionally, it will assess the difficulties it poses for both application developers
and academics. Finally, a comparison between AOP with OOP in terms of software maintainability will be made.

2. Related Works
AOP utilizes many of the following terminologies, and each of these terms need to be explained in order to have a
fundamental comprehensive of the idea of AOP. However, it should be noted that individual implementations and AOP
the existance of varites frameworks.

2.3. Cross Cutting Concern
According to (Rajan and Sullivan, 2005), a cross-cutting issue is a dimension within which design decisions are made.
When it is recognized in conventional object-oriented designs, it becomes cross-cutting and may result in dispersed (code
duplication) or tangled code (significant interdependence across systems), or both. As a result of code dispersion, cross-
cutting problems are executed inside the underlying program. For instance, log writing capability is needed in the majority
of components. As a result, implementation should spread among them. Additionally, since they are compelled to deal
with non-core operations, the responsibilities of the various components will remain unclear. Specifically, the command
of components in relation to the number of new features is cross-cutting functionality, sometimes referred to as knotted
code. The following Figure 1 illustrates a cross-cutting topic in further detail.

UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022 14

Figure 1. Cross Cutting Concerns (Ju and Bo, 2007)
2.4. Aspect
Aspect is a modular unit that satisfies cross-cutting criteria and may be specified as a class, for example, build. Additionally,
it has a number of pointers that are well related. The primary concept of aspect oriented programming (AOP) is to
encapsulate cross-cutting concerns functionally separate from the fundamental core programming in order to differentiate
specified modules. For instance, the AOP aspect may be used to identify a logging module. Meanwhile, applications might
have a variety of aspects, depending on the aspect language's needs. However, aspects may be built hierarchically, and the
language may provide methods for expressing an aspect and associating it with a core system.

2.5. Join Point
A join point for the request's execution is a well-defined place in a program that handles cross-cutting. During execution,
instructions referred to as join points may be performed. It varies according to the aspect language; for example, joint
point might refer to the methods that are executed, such as exception handler execution or modifying the class's properties
(Wand et al., 2001). Typically, each problem has a number of common points. However, if there are just a handful, they
might easily modify the code manually. AspectJ is an aspect-oriented modification to Java that has been used as an example
to aid in comprehension; while constructing an aspect, join points are specified. When specifying point cuts, it must
determine which joint point performs the action. Additionally, it has a limited number of accessible join points for doing
the following: (Vidal et al., 2015).

1. Calling methods
2. Calling constructor
3. Writing or reading access to a filed
4. Initializing execution of class and objects
5. Executing exception handler

2.6. Point Cut
A point cut is a collection of one or more entry points used to access the running program's execution. One of the points
indicated in the pointcut is also used by guidance and should be implemented. A programmer may specify the time and

P
er

so
n

al
 S

er
v

ic
e

F
in

an
ce

 S
er

v
ic

e

O
th

er
 S

er
v

ic
es

Security (Authorization)

Transaction

Logging

UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022 15

location of when and where the additional code shall be executed (Avgustinov et al., 2007). AspectJ's point cut expression
is one of the most well-known varieties of point cut expression languages. The model's appearance is shown in Figure 2.

Figure 2. (sample code) Models of AspectJ pointcut (Lehmann et al., 2012)

2.7. Advice
The advise develops an AOP and functional programming community of functions that change other functions.
Additionally, it is a guaranteed function, method, or procedure that is implemented at the point of connection in order
to facilitate the execution of a common application (Hentunen, 2015). Additionally, it addresses the functional needs for
addressing cross-cutting usability issues. Numerous types of advice are provided in conjunction with various modes of
communication. It is decided by the action that advise is capable of calling with the target method around a join point,
either before, after, or both.

2.8. Weaving
Weaving is a method for sending suitable advice at each execution step or for linking bits of an advised item to other
application requests or objects (Hentunen, 2015). These operations occur during the compilation phase, the load phase,
or the run phase (Chapman et al., 2013). An isolated aspect compiler is used to weave the code during the compilation
process. For instance, AspectJ is one of the most common compile-time aspect language implementations. The class
loader is responsible for weaving throughout the virtual machine class loading process in load-time weaving. Additionally,
runtime weaving accomplishes the binding via the usage of proxy classes and the building of code libraries. Furthermore,
the Spring Framework is a well-known example of a runtime implementation (Nguyen, 2018).

3. Advantages and Shortcomings of AOP
Utilizing aspect-oriented programming has a number of benefits. For instance, it may be an effective method for resolving
cross-cutting issues. However, various disadvantages may develop.

3.1 Advantages of AOP
As previously stated, AOP enables the management of cross-cutting business functions by encapsulating the desired
system. Alternatively, the function may be divided into discrete modules. Since a consequence, the entire structure may
be compromised, as the base program is not accountable for cross-cutting functionality (Raheman et al., 2018). This
technique will automatically result in less code duplication and a lower chance of errors. OOP may also be used to expand
or modify the usability of it is feasible that fresh extra features can be implemented without modifying the fundamental
software. While this is useful when the source code is unavailable for other reasons, it must be deleted since it may result
in altering side effects. Additionally, it may be used to evaluate apps through software testing guidance may be necessary
to invoke methods and track application counts and execution time. Advice may be validated prior to and after the use
of the approaches. Refer to Figure 3.

Figure 3. (Sample code) Simple example of creating advice (before and after) (Gulia et al., 2019)

UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022 16

3Disadvantages of AOP
AOP is a very efficient programming approach that is dependent on the implementation of the aspect language. This
procedure may involve the addition of class attribute values that may be used to adjust methods' arguments and return
values. Additionally, this might open up new options that can result in an increase in the system's process complexity,
resulting in difficult-to-trace faults. According to (Raheman et al., 2018), the use of AOP may add to the system's
complexity. This is reason for a programmer to explore any associated classes and characteristics in order to comprehend
the system's behavior. Additionally, when applied to AOP, the usability of the base program and any aspect programs
that are necessary for comprehending the program in its whole. Additionally, it is necessary to study the characteristics of
the super class in order to comprehend its subclass. Additionally, one potential disadvantage arises in the point cuts that
connect the join points with the others' advise. For instance, the description of the error point cut may result in guidance
to be compelled to enter incorrect join points or to avoid entering at all stages of the join points. Figure 4 illustrates the
many types of mistakes that might occur while describing a point cut.

Figure 4. Potential Error Situations with Point Cuts.

The following mistake scenarios are possible with point cuts (Lemos et al., 2006); see Figure 4:
1. Point cut selects a subset of the join points offered.
2. No join points were identified by the point cut.
3. A point cut selects anything that is desired or incidental.
4. Point cut deliberately selects many, but not all.

 Inaccuracies in the thumbnail description may result in difficult-to-detect behavior. If the system has connected pointcut
faults, the effective implementation of an aspect-based transaction management technique may result in a number of
system difficulties.

4. Evaluating AOP against OOP
The comparison of AOP vs OOP focuses mostly on cross-cutting concerns. AOP is used to modularize dispersed code;
creating modules from scattered code simplifies logging and improves the readability of the code. In contrast to AOP,
OOP cannot be represented physically. However, AOP is a seldom utilized technique that may incur considerable runtime
costs.

------- Correct join point set

 Pointcut

UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022 17

Figure 5. (Sample code) A logger implemented in Java (Lehmann et al., 2012)

Figure 6. (Sample code) A logger implemented in Java using AspectJ (Lehmann et al., 2012)

 There are two methods in Figure 5, 'addOne' and'subtractOne', as well as two log calls that have no influence on the
functionality of the calling method. These techniques may need extensive and sophisticated code as a result of the
implementation of this kind of cross-cutting issue; one advantage is that the logging may be abstracted through class
functions. Additionally, the log aspect abstracts whole logs. Demonstrates how to use the logger. By comparison, Figure
6 Additionally, 'MyClass' methods have a unique and suitable functionality where all handling is contained inside a single
function.

UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022 18

5. AspectJ in AOP
AOP's primary goal is to try to resolve code tangling and scattering difficulties by modularizing and encapsulating
crosscutting concerns. It introduces a novel concept referred to as an element in order to include a variety of cross-cutting
problems (Mcheick and Godmaire, 2018). Additionally, AspectJ may communicate with the underlying code through
pointers, advice, and type declarations. Refer to Figure 7, which has an example of Java code.

Figure 7. (Sample code) AspectJ code snippet (Lehmann et al., 2012)

 In terms of intertype declarations or intro- durations, they are a method that enables application developers to crosscut
concerns in a static manner. For instance, extending a class with additional methods or characteristics (Panwar et al.,
2019).

6. Concluding Remarks
Through the use of AOP, a novel and inventive technique for resolving cross-cutting issues has arisen. AOP provides an
alternate answer to issues that are difficult to handle with conventional OOP. However, as the system evolves and
becomes more complicated, AOP has yet to make a fundamental breakthrough that will answer all cross-cutting issues in
the near future. At the moment, AOP is unable to function successfully due to a lack of developing materials and resource
information from other initiatives. Despite these difficulties, it is expected to be included into future programming
standards. AOP is used to develop and construct dynamic and structured applications. AOP paired with AOP may create
a novel approach for programming in which the AOP may provide tools for managing cross-cutting difficulties. As a
result, the combination of object and aspect orientation is advantageous. The modularized nature of cross-cutting
activities may result in a succinct and ordered structure, which can assist decrease the likelihood of mistake. This is made
feasible by the ability to incorporate the functionality of several components into software. As a consequence, less code
is required than would be necessary with pure OOP software. Additionally, AOP is more effective. Additionally, to what
has been said, despite the many benefits of AOP, there are some worries concerning its transparent and nonintrusive
functions. For instance, characteristics may be adjusted independently of source code access information using the present
essential program features. Additionally, researchers assert that programmers who improve their comprehension and
maintainability of application components will get superior outcomes in the era of programming languages. We have
noticed that in recent years, AOP is still considered one of the most promising programming languages in terms of being
integrated with other technologies. This means that the changes and developments in it are continuing to come up with
new methods that can be more effective and capable of yielding more satisfying results. For future reading, the authors
advise the reader could optionally read the following research works (Bryar A.Hassan, 2020; B. A. Hassan, 2020, 2021; B.
A. Hassan, Ahmed, Saeed, and Saeed, 2016; B. A. Hassan and Qader, 2021; B. A. Hassan and Rashid, 2019, 2021a; B. A.
Hassan, Rashid, and Hamarashid, 2021; B. A. Hassan, Rashid, and Mirjalili, 2021; B. Hassan and Dasmahapatra, n.d.;
Maaroof et al., 2022; Saeed, Hassan, and Qader, 2017)(B. A. Hassan and Rashid, 2021b)

References
Alshareef, S. F., Maatuk, A. M., Abdelaziz, T. M., and Hagal, M. (2020). Validation Framework for Aspectual

Requirements Engineering (ValFAR). Proceedings of the 6th International Conference on Engineering & MIS 2020, 1–7.

UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022 19

Avgustinov, P., Hajiyev, E., Ongkingco, N., de Moor, O., Sereni, D., Tibble, J., and Verbaere, M. (2007). Semantics of
static pointcuts in AspectJ. ACM SIGPLAN Notices, 42(1), 11–23.

Bryar A.Hassan and T. A. R. (2020). Formal Context Reduction in Deriving Concept Hierarchies from Corpora Using
Adaptive Evolutionary Clustering Algorithm. Complex & Intelligent Systems.

Beneken, G., Marschall, F., and Rausch, A. (2005). A Model Framework Weaving Approach, In: Proceedings of the First
Workshop on Models and Aspects-Handling Crosscutting Concerns in MDSD at the 19th European Conference
on Object-Oriented Programming (ECOOP 2005). 19th European Conference on Object-Oriented Programming
(ECOOP 2005).

Chapman, M. P., Colyer, A. M., and Dalziel, B. J. (2013). Monitoring dynamic aspect oriented applications at execution time. Google
Patents.

Gulia, P., Khari, M., and Patel, S. (2019). Metrics analysis in object oriented and aspect oriented programming. Recent
Patents on Engineering, 13(2), 117–122.

Hentunen, D. (2015). Detecting a return-oriented programming exploit. Google Patents.
Hassan, B. A. (2020). CSCF: a chaotic sine cosine firefly algorithm for practical application problems. Neural Computing

and Applications, 120.
Hassan, B. A. (2021). Analysis for the overwhelming success of the web compared to microcosm and hyper-G systems.

ArXiv Preprint ArXiv:2105.08057.
Hassan, B. A., Ahmed, A. M., Saeed, S. A., and Saeed, A. A. (2016). Evaluating e-Government Services in Kurdistan

Institution for Strategic Studies and Scientific Research Using the EGOVSAT Model. Kurdistan Journal of
Applied Research, 1(2), 1–7.

Hassan, B. A. and Qader, S. M. (2021). A New Framework to Adopt Multidimensional Databases for Organizational
Information System Strategies. ArXiv Preprint ArXiv:2105.08131.

Hassan, B. A. and Rashid, T. A. (2019). Operational framework for recent advances in backtracking search optimisation
algorithm: A systematic review and performance evaluation. Applied Mathematics and Computation, 124919.

Hassan, B. A. and Rashid, T. A. (2021a). A multidisciplinary ensemble algorithm for clustering heterogeneous datasets.
Neural Computing and Applications. URL: https://doi.org/10.1007/s00521-020-05649-1

Hassan, B. A. and Rashid, T. A. (2021b). Artificial Intelligence Algorithms for Natural Language Processing and the
Semantic Web Ontology Learning. ArXiv Preprint ArXiv:2108.13772.

Hassan, B. A., Rashid, T. A., and Hamarashid, H. K. (2021). A Novel Cluster Detection of COVID-19 Patients and
Medical Disease Conditions Using Improved Evolutionary Clustering Algorithm Star. Computers in Biology and
Medicine, 104866.

Hassan, B. A., Rashid, T. A., and Mirjalili, S. (2021). Performance evaluation results of evolutionary clustering algorithm
star for clustering heterogeneous datasets. Data in Brief, 107044.

Hassan, B. and Dasmahapatra, S. (n.d.). Towards Semantic Web: Challenges and Needs.
Ju, K. and Bo, J. (2007). Applying IoC and AOP to the Architecture of Reflective Middleware. 2007 IFIP International

Conference on Network and Parallel Computing Workshops (NPC 2007), 903–908.
Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. (2001). Getting started with AspectJ.

Communications of the ACM, 44(10), 59–65.

Lau, R. Y. K., Zhang, W., and Xu, W. (2018). Parallel aspect‐oriented sentiment analysis for sales forecasting with big
data. Production and Operations Management, 27(10), 1775–1794.

Lemos, O. A. L., Ferrari, F. C., Masiero, P. C., and Lopes, C. V. (2006). Testing aspect-oriented programming pointcut
descriptors. Proceedings of the 2nd Workshop on Testing Aspect-Oriented Programs, 33–38.

Mcheick, H. and Godmaire, S. (2018). Designing and implementing different use cases of aspect-oriented programming
with AspectJ for developing mobile applications. Proceedings of the 7th International Conference on Software Engineering
and New Technologies, 1–8.

Maaroof, B. B., Rashid, T. A., Abdulla, J. M., Hassan, B. A., Alsadoon, A., Mohamadi, M., … Mirjalili, S. (2022). Current
Studies and Applications of Shuffled Frog Leaping Algorithm: A Review. Archives of Computational Methods
in Engineering, 1–16.

Nguyen, T. (2018). Java Spring Framework in developing the Knowledge Article Management application: A brief guide to use Spring
Framework.

Panwar, P., Agarwal, D., Vyas, P., Jadhav, P. A., and Joshi, S. D. (2019). Evolution of Testing with Respect to the
Programming Paradigms. International Journal of Mechanical Engineering and Technology, 10(3).

https://doi.org/10.1007/s00521-020-05649-1

UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022 20

Rademacher, F., Sachweh, S., and Zündorf, A. (2019). Aspect-oriented modeling of technology heterogeneity in
microservice architecture. 2019 IEEE International Conference on Software Architecture (ICSA), 21–30.

Raheman, S. R., Maringanti, H. B., and Rath, A. K. (2018). Aspect oriented programs: Issues and perspective. Journal of
Electrical Systems and Information Technology, 5(3), 562–575.

Rajan, H. and Sullivan, K. J. (2005). Classpects: unifying aspect-and object-oriented language design. Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE 2005., 59–68.

Saeed, M. H. R., Hassan, B. A., and Qader, S. M. (2017). An Optimized Framework to Adopt Computer Laboratory
Administrations for Operating System and Application Installations. Kurdistan Journal of Applied Research,
2(3), 92–97.

Vidal, C., Benavides Cuevas, D. F., Leger, P., Galindo Duarte, J. Á., and Fukuda, H. (2015). Mixing of join point interfaces
and feature-oriented programming for modular software product line. BICT 2015: 9th EAI International Conference
on Bio-Inspired Information and Communications Technologies (2015), p 433-437.

Wand, M., Kiczales, G., and Dutchyn, C. (2001). A semantics for advice and dynamic join points in aspect-oriented
programming. SAIG, 45–46.

Zhang, L. (2011). Study on comparison of AOP and OOP. 2011 International Conference on Computer Science and Service System
(CSSS), 3596–3599.

