
 

 
UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022                                                                                      33 

 
 
  
 

XML Schema Validation Using Java API for XML Processing 
 
Shene Jalil Jamal 1,a,*, Chnoor M. Rahman 2,b, Mzhda S. Abdulkarim 2,c 
 
1 Computer Department, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq 
2 Department of Applied Computer, College of Medical and Applied Sciences, Charmo University, Chamchamal, 
Sulaymaniyah, Kurdistan Region, Iraq 
 
a shene.jamal@univsul.edu.iq, b chnoor.rahman@charmouniversity.org, c mzhda.sabir@charmouniversity.org 
 

Access this article online 

Received on: 30 November 2021 Accepted on: 20 June 2022 Published on: 30 June 2022 

DOI: 10.25079/ukhjse.v6n1y2022.pp33-41 E-ISSN: 2520-7792 

Copyright © 2022 Jamal et al. This is an open access article with Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (CC BY-NC-ND 
4.0). 

 

 
1. Introduction 
In general, a schema in XML represents the specifications of objects and identifies the relationships between the objects. 
Schema definition languages are the recommendations of the World Wide Web Consortium (W3C) which itself is 
represented by XML. The language provides facilities to describe the structure of an XML document. It is described as 
rules that apply to a group of XML documents (Lawton, 2015). The main purpose and most popular use of schema is 
validation. Different kinds of validation can be performed with different kinds of schema. This means the validation 

Research Article 

Abstract 
Extensible Markup Language (XML) is a markup language that is developed to organize the structure of information 
in a text file. The data in XML formatted documents are represented by specifying a number of tags and determining 
the structural relationship between those tags. It has a simple structure and can be handled by any text editor. 
Therefore, XML formatted data is being commonly used to transfer and share data between different applications 
and organizations without having to convert the format of the data (Yang, 2019). 
  In the XML world, “well-formed” and “valid” are the two most frequently used terms. A well-formed XML 
document is free from errors that can cause the document to not parse, such as: spelling, punctuation, grammar, and 
syntax errors. While in addition to having a well-formed markup, a valid XML must conform to a document type 
definition, this means the document must be semantically correct and matches a described standard of schemas and 
relationships (Appel, 2020).There are two standards of document type definition that can be used to validate an XML 
document, one is DTD or Document Type Definition which is used to identify the legal structure and names the legal 
elements of an XML document (Dykes and Tittel, 2011), and the other is XSD or XML Schema Definition. XSD is 
a diagrammatic representation that defines the valid structure of an XML document, it enables specifying the building 
blocks of an XML data set such as elements and attributes and their data types, number of child elements, fixed and 
default values of the elements and attributes that can appear in the documents (XML Schema Tutorial, 2020). In some 
applications the process of validating XML documents is combined with parsing the document. However, in some 
other cases the process of parsing and validating the XML documents need to be separated. This study focuses on 
constructing a separate XML document validator and validating XML documents against the defined XSD rules. A 
Java program is used to perform this experiment. Furthermore, the critical differences between XSD and DTD are 
also mentioned. 
 

Keywords: XML Schema, XSD, JAXP, DTD, Java. 



 

 
UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022                                                                                      34 

requirements might be different in different situations. There are many circumstances which requires validating XML 
documents, for example when testing the output of an application to make sure that the data meets the specified 
requirements, and when receiving an XML document from an external source (in case of Web Services) the data must be 
validated before inserting it into a legacy system (Gandhi, 2014). At several levels of processing data, validation could 
occur. For instance, structural validation makes sure that the structure of XML elements and attributes in an XML 
document satisfy the identified requirements, however it does not illustrate the textual content of the document. Data 
validation is another kind of validation process, which ensures that the content of an XML document follows the rules 
which specify the type of information that should be presented (Gandhi, 2014). This paper focuses on constructing a tool 
to validate XML documents against XSD in terms of structure and data content validations. The validation process is 
performed using Java programming language, as java provides useful and easy to use Application Programming Interface 
(API) for the purpose of validating XML against XSD. Furthermore, the data model of XSD and the differences between 
XSD and DTD are discussed. 
  The research starts by studying XML schema abstract data model as an approach to determine how the schema of an 
XML document and the data elements should be organized. Next, two available and common methods to describe the 
structure and content of XML documents are; Document Type Definition (DTD) and XML Schema are discussed and 
compared. Based on the advantages of XML Schema over DTD, XML Schema has been used for the validation process. 
In section five ‘validation technique’ the proposed validation method is explained. Java API for XML Processing (JAXP) 
is utelized to develop the validator, and all the necessary steps and phases of the validation process is presented in this 
section. Finally, in the results and discussion section the research mentiones the requirements of an application that should 
be considered while choosing a validation technique. 
 

2. Materials and Methodology 
In this paper, the technique used to study XML validation is implemented in Java programming language. Java supports 
most of the XML related technologies. The proposed validation technique supports those systems and applications that 
require the process of validation and parsing XML documents to be separated. Therefore, the chosen Application 
Programming Interface (API) is JAXP Validation API. This API allows the applications to validate an XML document 
against an XML Schema Definition (XSD) without having to parse the XML document. The most important procedures 
of making this validation program are presented with details in section “The Validation Technique”.   
 

3. XML Schema Abstract Data Mode 
The information set that is expressed in XML schema components identifies the abstract data model of the XML schema 
(Geroimenko, 2012). According to W3C one fundamental abstract data model can describe all XML Schemas. That model 
specifies the structure and the data content of the schemas. However, The XML Schema abstract data model is only 
conceptual, and it does not impose any specific style or structure on the XML documents or schemas. It only provides a 
large collection of components and dictates how the components should be linked (McKinnon and McKinnon, 2003). 
As shown in Table 1, W3C describes several kinds of schema components, which can be classified in three groups, which 
are Primary components, Secondary components and Helper components (Henry and Gao, 2012). The entire Primary 
component and some of the Secondary components are discussed in this section. 
 

Table 1. XML Schema Component Groups. 

Component 
Group 

Schema Components 

Primary 

Simple type definitions 

Complex type definitions 

Attribute declarations 

Element declarations 

Secondary 

Attribute group definitions 

Identity-constraint definitions 

Model group definitions 

Notation declarations 

Helper 
Annotations 

Model groups 



 

 
UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022                                                                                      35 

Particles 

Wildcards 

Attribute Uses 

 
  The root element of an XML Schema is schema, which is usually defined in the schema namespace. Within a schema 
construct, elements can be declared using element construct <xsd:element> , attributes are also specified using  attribute 
construct <xsd:attribute> (elements and attributes can be declared using xs or xsd prefix. In practice there is no difference 
between xs and xsd.). Two type constructs are described in XML Schema language, a simple type and a complex type. 
Complex type is used in almost all meaningful document structures.  An element that contains an attribute, a child element 
or both make a complex type. Complex types are defined in the element declaration using a combination of 
<xsd:element> and <xsd:complex-Type>. In contrast, elements that only contain numbers or character strings with child 
elements are said to be simple types. To declare a simple type a combination of <xsd:element> and <xsd:simpleType> 
is used (Henry and Gao, 2012) and (Vohra, 2007).  
  Generally, Schema models are described in terms of constraints to determine what a specific document or language can 
contain. XML Schemas describe two kinds of constraints: The first is Content Model Constraints, which define the 
elements that can occur in an XML document. It also specifies the grammar of the language in the documents. The 
second constraint is Data Type Constraints. These constraints specify the types of data that the schema recognizes as 
valid (Henry and Gao, 2012), and (Owen and Boyer, 2011). An example of an XML document (“shiporders.xml”) and its 
XML Schema (“shiporders.xsd”) are shown in Figure 1 and 2. 
 

Figure 1. An XML Document “shiporders.xml” (W3Schools, 2021). 
 

  In the above XML Document “shiporders” is the root element, the attribute “orderid” is identified in this element. The 
root element “shiporders” specifies three child elements “orderperson”, “shipto” and “item”, these elements also contain 
other different child elements. The sentence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" indicates that 



 

 
UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022                                                                                      36 

an XML parser should validate the XML document based on a schema, and the line 
xsi:noNamespaceSchemaLocation="shiporders.xsd" informs the parser about the schema file  (in this example the 
schema file is “shiorders.xsd”) and the location of the file (in this example it is in the same directory as “shiporders.xml”).  
  Figure 2 shows the schema file, which starts with the standard XML declaration and is also organized in XML format.  
 

Figure 2. An XML Schema “shiporders.xsd” (W3Schools, 2021). 

 
  In the above XML Schema, the root element <xs:schema> defines  the attribute xmlns:xs which is associated with the 
URI "http://www.w3.org/2001/XMLSchema" to specify the namespace.  
  Next, the root element “shiporders”, its attribute and child elements are defined. This element makes a complex type 
because it contains attribute and child elements. To display the three child elements (“orderperson”, “shipto”, “item”) of 
“shiporders” in an ordered sequence, the elements are enclosed between <xs:sequence> elements. The “orderperson” is 
considered as simple type as it does not contain any attribute or child element. However, “shipto” and “item” elements 



 

 
UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022                                                                                      37 

are of complex types (Owen and Boyer, 2011). The “maxOccurs” and “minOccurs” attributes determine minimum and 
maximum possible appearance of an element. The default value of these attributes is 1, and if the occurrence of the 
element is optional then “minOccurs” is set to have the value 0. Here In the declaration of “item” element the value of 
“maxOccurs” is “unbound” which means the item element can occur many times. “shiporders” has a required attribute 
“orderid”, the attribute is declared in the end of the schema.  
 

4. XML Schema versus DTD 
Document Type Definition (DTD) and XML Schema are two approaches to organize the structure and define the content 
of an XML document. Although DTD was founded first, there are some significant differences between the two methods, 
and XML Schema has considerable advantages over DTD. The main advantage of XML Schema is that they are strongly 
typed and they have the ability to define data types of elements and specify their values, length and define other complex 
structures. This facility can confirm that the data stored in an XML document is valid. While DTD lacks this ability, it is 
weakly typed and cannot validate data contents to their data types (Joan, 2011), and (Tidwell, 2008). Another difference 
which makes XML Schema to be more powerful is the fact that XML Schema is written in XML format. Therefore, XML 
Schemas can be parsed and manipulated like any XML document. In contrast DTD is defined in SGML (Standard 
Generalized Markup Language). Accordingly, defining the structure and content of an XML document in DTD requires 
the need to learn a new language (Joan, 2011). Supporting namespace is another characteristic of XML Schema, it can use 
a set of namespaces to define and organize the Schema. While on the other hand DTD is not aware of namespaces, 
instead it defines the building blocks of XML documents using its own set of keywords (Ali, 2012). Considering the 
advantages of XML Schema over DTD, this study focuses on validating XML documents against XML Schema rather 
than DTD.  
 

5. The Validation Technique 
The process of validating XML documents is often necessary to make sure that any system or application which uses the 
document receives the correct and expected form of data. The validation tool which is developed for this purpose must 
confirm that the XML documents adhere to the structures and rules specified by a Schema. This section illustrates the 
steps of developing an XML Schema validator to validate XML documents against XSD using XML related technologies 
in Java. The validator could then be used when the process of validation needed to be decoupled from parsing. The 
Application Programming Interface (API) used to develop the validator is Java API for XML Processing (JAXP). JAXP 
allows the applications to parse, validate and query XML documents. It can be divided into two groups: The first group 
contains JAXP SAX and DOM parser APIs. SAX (Simple API for XML) is an event based API, it generates a series of 
events while parsing documents which are handled by callback methods. While DOM (Document Object Model) is an 
object based API, it represents the XML document in a tree structure so that the application can use the tree nodes for 
manipulating and querying the data in the document (Li, 2009). These APIs are suitable to be used in applications, which 
require parsing and validating the XML documents to be combined. In contrast, the second group contains JAXP 
Validation API. This API is suitable to be used in applications, it require parsing and validating XML documents to be 
decoupled (Vohra, 2007). This second group API is used to examine the validation process in this research. To validate 
XML Documents with JAXP Validation API three steps must be taken. Figure 3 is a flowchart diagram that represents 
the general steps of the validation process.  
 



 

 
UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022                                                                                      38 

Figure 3. Flowchart of the Validation Process. 
 
First: Instantiating three necessary objects. 
The three required objects to be obtained are objects from SchemaFactory , Schema, and Validator classes. To be able to 
create these objects the javax.xml.validation.* package must be imported first. A Schema object representation is necessary 
to be able to validate with XML Schema based definition (Vohra, 2007). The Schema object is created from 
SchemaFactory class as shown below: 
 
SchemaFactory factory= SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI); 
Schema schema= factory.newSchema(newFile("XMLSchemaFile.XSD")); 
 
  The parameter to the newSchema() method is the name of an XML Schema file which the validation depends on to 
check if an XML document follows the specified rules and structures that are defined in the file. The validator object is 
then created from the schema object as shown below. 
 
Validator validator = schema.newValidator(); 
 



 

 
UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022                                                                                      39 

Second: Reporting Validation Error. 
The validator should be able to handle validation errors. To accomplish this task an ErrorHandler class must be defined. 
This class extends DefaultHandler as shown in Figure 4. An object from this class is set as an argument to the 
setErrorHandler() method, which is invoked by the “validator” object created in the first step.  

 

Figure 4. The ErrorHandlerApp Class. 
 

Creating an object from this class and using it with the setErrorHandler() method is shown below: 
 
ErrorHandlerApp errorHandlerObject= new ErrorHandlerApp(); 
validator.setErrorHandler(errorHandlerObject); 
 
Third: Validating the XML document. 
The last step to complete the validation process is validating the XML document. To process the validation, the XML 
document does not need to be parsed. Alternatively an StreamSource object is created from the XML document, and the 
validator objects is used to call the validate() method. This method takes the StreamSource object as an argument. 
 
StreamSource streamsrc = new StreamSource (XMLDocument.xml); 
Validator.validate(streamsrc); 
 
Lastly, the following lines of code were added to check for errors and show the result of the whole validation process. 
Figure 5 shows the result of the process, if the XML document is not valid then error messages will be shown, otherwise 
the program indicates that the document is valid.  
 

Figure 5. The Result of the Validation Process. 

 

6. Result and Discussion 



 

 
UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022                                                                                      40 

Selecting an approach to validate an XML document depends on satisfying the additional functionality of the validation 
application. For instance, if parsing an XML document requires being associated with validating the document with a 
schema, then SAX parser is recommended. However, if the entire tree structure of an XML document needs to be 
accessed and modified repeatedly, then DOM parser is recommended (Nagrare, 2020b). Furthermore, the parsing process 
can be performed along with validation if the chosen XML parser can implement validation too. Nevertheless, sometimes 
the parsing and validation process is required to be separated. The XML validation method examined in this research 
satisfies this requirement. Separating validation from parsing using JAXP Validation API could be a practical solution for 
the applications that need to validate an XML document that is not supported by the accessible parser. In addition, with 
JAXP Validation API, an object is instantiated to represent a schema. This object can be used to validate multiple XML 
documents. According to (Vohra, 2007) using a single object to validate multiple XML documents is an efficient process. 
Therefore, JAXP Validation API could be an appropriate method to utilize if for any reason the parsing process of an 
XML document requires being decoupled from the validation process.  
 

7. Conclusion 
With increasing the number of XML related technologies, XML is becoming more popular and is used in a large number 
of various applications and systems. Therefore, it is vitally important to organize the XML formatted documents in well 
formed and validated structure and content. This way the systems and applications will be able to predict which kind of 
data format is received as input, and which structure of data will be produced as output. DTD and XSD are two available 
standards to define structure and content of XML documents and validate the XML documents against described 
structures. This study mainly focused on using XSD to accomplish the process of validation, as XSD has more advantages 
than DTD. For example, XSD has the same structure as XML documents and it is parsed and processed the same way 
as XML. Furthermore, XSD supports multiple namespaces, and it also has the ability to specify the elements data types 
and their values to make the validation a reliable process. There are various programming languages that provide 
techniques to implement the XML validation process. The validation system proposed in this study was implemented in 
Java Programming language. JAXP is the API which is used for this purpose. This API could be divided into two classes. 
The first class includes JAXP SAX and DOM, which perform XML validation as a part of parsing. While the second class 
includes JAXP Validation API, which could be used in those applications that need the process of validation and parsing 
to be decoupled. The experiment discussed in this paper uses the API of the second class, as the technique is proposed 
to support systems that separate validation from parsing. A number of scenarios might involve separating these two 
processes, for example: if the Schema was available from an external source, if the schema language was not supported 
by the available parser or if the application needed to validate multiple XML documents against the same schema 
definition. The JAXP Validation API was used to construct a separate validation program to support validating XML 
documents against external Schema whenever it is required. 

References 
Ali, U. (2012). Difference between dtd and xsd. Slideshare. Retrieved 01 November 2021 from 

https://www.slideshare.net/umarali1981/difference-between-dtd-and-xsd. 
Appel, R. (2020). Create well-formed XML and schema efficiently | The .NET Tools Blog. JetBrains Blog. Retrieved 01 

October 2021 from https://blog.jetbrains.com/dotnet/2020/09/29/create-well-formed-xml-and-schema-
efficiently-rider. 

Dykes, L. and Tittel, E. (2011). XML For Dummies (4th ed.). Wiley. 
Gandhi, M. (2014). W3c XML Schema 1.1 for Beginners (1st ed.). Reed Business Education. 
Geroimenko, V. (2012). Dictionary of XML Technologies and the Semantic Web (illustrated ed.). Springer Publishing. 
Henry, S. and Gao, S. (2012). W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures -- Review Version. 

W3C Recommendations. Retrieved 12 October 2021 from https://www.w3.org/TR/xmlschema11-
1/structures.diff-1.0.html. 

Joan, B. (2011). XML Schema and DTD. Difference Between. Retrieved 02 November 2021 from 
http://www.differencebetween.net/technology/difference-between-xml-schema-and-dtd. 

Lawton, G. (2015). XSD (XML Schema Definition). WhatIs.Com. Retrieved 08 October 2021 from 
https://whatis.techtarget.com/definition/XSD-XML-Schema-Definition. 

Li, C. (2009). XML Parsing, SAX/DOM. University of Texas at Arlington. Retrieved 15 June 2021 from 
https://ranger.uta.edu/~cli/pubs/2009/XMLParsing_ChengkaiLi.pdf. 

McKinnon, L. and McKinnon, A. (2003). XML in 60 Minutes a Day (1st ed.). Wiley. 



 

 
UKH Journal of Science and Engineering | Volume 6 • Number 1 • 2022                                                                                      41 

Nagrare, S. (2020a). Difference Between DOM and SAX ? DOM vs Sax Easy Explain. Easy Difference Between. 
Retrieved 20 November 2021 from https://easydifferencebetween.com/difference-between-dom-and-sax/. 

Nagrare, S. (2020b). Difference Between DOM and SAX ? DOM vs Sax Easy Explain. Easy Difference Between. 
Retrieved 20 November 2021 from https://easydifferencebetween.com/difference-between-dom-and-sax/. 

Owen, D. and Boyer, W. (Eds.). (2011). Exam 70–432: Microsoft SQL Server 2008 Implementation and Maintenance with Lab 
Manual Set (1st ed.). Wiley. 

Tidwell, D. (2008). XSLT: Mastering XML Transformations (2nd ed.). O’Reilly Media. 
Vohra, A. and Vohra, D. (2007a). Introducing Schema Validation. In Pro XML Development with Java Technology (1st ed. pp. 65–

66)). Apress. 
Vohra, A. and Vohra, D. (2007b). Introducing XML and Java. In Pro XML Development with Java Technology (1st ed., pp. 1–31). 

Apress. 
W3Schools. (2021). An XML Document [Illustration]. W3Schools. Retrieved 20 November 2021 from 

http://www.w3schools.com/xml/schema_example.asp. 
XML Schema Tutorial. (2020). W3schools. Retrieved 02 October 2021 from 

https://www.w3schools.com:443/Xml/schema_intro.asp. 
Yang, H. (2019). XML Tutorials - Herong’s Tutorial Examples. [online] Google Books. HerongYang.com.  Retrieved 15 

June 2021 from 
https://books.google.iq/books?id=zKoDEAAAQBAJ&pg=PA13&dq=introduction+to+xml&hl=en&sa=X
&ved=2ahUKEwjZs43ega_4AhXXkmoFHY31DaY4HhDoAXoECAoQAg#v=onepage&q=introduction%2
0to%20xml&f=false. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


