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1. INTRODUCTION

One of  the main objectives in analyzing data is to 
learn from past events and to incorporate this 
knowledge for future planning and decision-making. 

This involves the use of  all the current and past information 
to forecast future outcomes. In forecasting, the time horizon 
is determined by the characteristic timescales of  the process 
concerned and the objective in exercising the analysis. For 
example, the scheduling of  production and inventories requires 
short-term forecasts while longer horizons are required when 
the long-term prospect ranging from expansions in a plant to 
environmental factor impacts is investigated (Niu and Harris, 
1996; Kwon et al., 2002). Typical periods in the first case are 
10–14 weeks and 3–5 years and more for the second.

The problem of  short-term forecasting has been addressed 
extensively in the past. A detailed review of  various short-term 
forecasting models can be found in Harvey (1984). However, 
long-term forecasting, from a practical viewpoint, is considered 

more qualitative in nature involving both the forecasters’ skills 
and the available information on an ad hoc basis, has suggested 
by Kendall and Ord (1993), Armstrong (1985), and Martino 
(1983). Research on theoretical aspects of  long-term forecasting 
models has covered various modifications of  short-term 
forecasting models. Kabaila (1981), Stoica and Soderstorm 
(1984), and Tiao and Xu (1993) have suggested different least 
square parameter estimates of  the one-step ahead forecasting 
model to incorporate multiple steps ahead predictions. Different 
Box Jenkins models have been suggested by Findley (1983), 
Gersch and Kitagawa (1983), and Lin and Granger (1994). 
Furthermore, Pillai (1992) has used the maximum entropy 
criterion for multistep predictions. Other strategies include 
the direct “plug-in” method where unobserved values are 
successively replaced by their one-step ahead forecasts. Bhansali 
(1996, 1999) has provided theoretical grounds for the optimality 
in using a single model for multiple steps ahead forecasting 
while Kang (2003) has suggested the use of  different models 
for different spans of  the process under investigation.

In general, the possibility of  incorporating different horizons 
forecasts requires the study of  two types of  variation. These 
are the inherent structural variation that characterizes the 
long-term nature of  the process and the short-term high-
frequency variation. The existing short (long)-term forecasting 
models are not designed to separate these characteristics, and 
therefore, not reliable in generating long (short)-term forecasts.
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In this paper, a new approach is introduced in which the 
characteristics of  different variational parameters are 
preserved making forecasting over different horizons possible 
in a logical manner.

The close link between autoregressive integrated moving 
averages (ARIMA) and the state space representation is 
explained in both the statistical and control engineering 
literature (Box and Jenkins, 1970; Anderson and Moore, 
1979).

Assuming that {Yt|q1,t} is a time series process with the 
parameter vector q1,t representing the state of  the process, a 
dynamic linear model (DLM) is shown in the Equation (1):

Yt=F1,tq1,t+vt, vt~N[0, Vt] (1)

And, the state transition is calculated in Equation (2):

q1,t=G1,tq1,t−1+wt, wt~[0, W] (2)

Where F1,t, and G1,t are known, and {ϑt} and {ωt} are 
uncorrelated normal variates with zero means.

This has been extended to model correlated variables by 
adding a third Equation (3) representing transitions on vt 
so that:

vt=G2vt−1+εt, εt~N[0; σ2] (3)

Where G2 is assumed known and εt is a normal variate 
with zero mean vector (Anderson and Moor 1979. p. 290). 
However, the model can be reparametrized as a non-linear 
predictor model (NPM), Ameen (1992), in which the 
autoregressive components, G2, can be assumed known and 
updated through time.

A main drawback of  linear structures in modeling correlated 
observations is that information is filtered between different 
state parameter components using the usual Kalman filter. 
The underlying parameters are updated according to a 
common one-step forecasting error. This makes causal model 
parameters to lose their characteristic properties during the 
sequential updating process. For example, it is not possible 
to consider one-step forecasting errors that are calculated 
from a short-term model for the parameters identifying 
long-term structures and vice versa. This may suggest that the 
two characteristics are separable and independent modeling 
structures should be implemented. Earlier efforts have 
been concentrated on the idea of  curve fitting. Gregg et al. 

(1964) and later Harrison and Pearce (1972) have presented 
comprehensive accounts of  the ICI methodology for long-
term forecasting. These authors have discussed extrapolation 
techniques using some specific functions as trend curves. 
More discussions on these curves and confidence limits on 
forecasts can be found in the study of  Levenbach and Reuter 
(1976). Harrison et al. (1977) have constructed models that 
consider randomness around predetermined linear/non-
linear global trends all constructed to provide long-term 
forecasts. Although there is a logical connection between 
forecasts for different horizons, lead time periods separating 
short-, medium-, and long-term forecasts are rather subjective 
and difficult to justify.

The discounting principle of  Ameen and Harrison 
(1985) has extensively been used in Bayesian modeling 
and forecasting (Harrison and Akram, 1983; Migon and 
Harrison, 1985). In these models, low frequencies are 
modeled using autoregressive parameters. Although this can 
accommodate the correlation between the departures from 
the underlying trend, the identification and estimation of  
many autoregressive parameters can be tedious. Moreover, 
different model parameter updates are dominated by one 
source of  information (one-step forecasting errors). The 
models have no facilities to encapsulate the long-and short-
term behavior of  the time series. More recently, Danesi 
et al. (2017) have followed a form of  variability decomposition 
(Al-Madfai, 2002; Al-Madfai et al., 2004) extracting some 
underlying smooth function to capture the long-term 
behavior of  the time series in question and adopt the ARIMA 
modeling technique on the remainder.

This paper is an attempt to resolve these problems by 
introducing a fairly general method in which characteristic 
properties of  different state parameter vectors are preserved in 
updating. This is performed using the idea of  submodels. The 
problem of  identification and estimation of  autoregressive 
parameters is overcome through the introduction of  a set 
of  easily assessed discount factors. Although the idea is 
fairly general, we concentrate on the case of  normality with 
random level and growth components. Generalizations to 
higher dimensions follow easily. The general idea is presented 
in Section 2 in which full recursive formulas for parameter 
estimates are given. A number of  limiting properties are 
discussed, and models structural behavior and limiting 
forecast functions are given in Section 3.

Throughout this paper, X ~ N[a; b] means that X is normally 
distributed with mean a and variance b. The same holds for 
random vectors.
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2. LOCAL AND GLOBAL FORECASTING MODELS

Let, {Yt|qt} be a process with low- and high-frequency 
variations. Furthermore, assume that these variations 
are represented by q1,t and q2,t as the components of  qt, 
respectively. Furthermore, let M1 and M2 be subjects modeling 
the existing low- and high-frequency parameters, respectively. 
In the above, the parameter vector q1,t may be identifying 
a general polynomial trend approximating the inherent 
underlying process structure while q2,t may represent the 
causal variability around that of  q1,t.

The common approach for modelling such scenarios has 
been through the specification of  an observation probability 
distribution f(yt|q1,t, q2,t) accompanied by a prior state 
distribution f(q1,t, q2,t|Dt−1, M1, M2) where Dt−1 represents the 
information available at time t−1 including past observations. 
A before posterior transition in time together with the 
above specifications allows a complete Bayesian sequential 
estimation to be conducted for the estimation of  model 
parameters. The general DLMs of  Harrison and Stevens 
(1976) and NPM of  Ameen (1992) are examples of  such kind. 
The broad specification above contains both the high and 
low dimensionalities of  the process in a combined form. As 
a result, the defined models do not allow the two parameter 
vectors q1,t and q2,t to preserve their characteristics as they are 
both updated using one error structure. In such cases, a joint 
forecasting distribution seems inadequate as the updating 
structure for q1,t and q2,t remains less informative about the 
short- or long-term behavior of  the process.

The two types of  variability discussed above are conditionally 
independent. That is, given the observation yt, q1,t is 
independent on q2,t and this can be exploited to learn about 
these parameters in one model. The resulting model can 
be used to bridge the gap between forecasts for different 
horizons and make data analysis more efficient in some 
practical cases.

The practical need for estimating parameters of  different 
characteristics has led by Smith et al. (1994) to construct a 
two-stage sales forecasting procedure using discounted least 
squares. The low-frequency variations are modelled in one 
stage followed by the modeling of  the departures from this 
trend as a second stage.

Using the above terminology, we have the following Equation 
(4):

Zt+1=Yt+1−E(Yt+1|Dt, M1) (4)

Moreover, the general forecast function may be expressed 
as follows:

E(Yt+k|Dt, M)=E(Yt+k|Dt, M1)+E(Zt+k|Dt, M) (5)

Where M={M1, M2}.

Furthermore, the departures Zt are modelled so that 
E{Zt+k|Dt, M} → 0 as k → ∞. This property ensures a logical 
transition between forecasts for different horizons from a 
single model as the lead-time increases.

The underlying modeling strategy is described as follows:

Given the observation distribution:

t t t t t tY V ~N F V| , [ ; ]1, 1, 1,
1θ θ −  (6)

And, posterior distributions at time t−1:

V D M
r s

t t
t t

− −
− −

1 1 1
1 1

2 2
| , ~ ( , )Γ

1 1 1 1 1 1 1 1
1

1, ,| , , ~ [ ; ]t t t t t tD V M N m V R− − − − −
−

−

The prior distributions for time t are defined as follows:

t t -1 1
t -1 t -1V |D ,M (a r
2
,b s
2
)~Γ  (7)

1 1 1 1 1
1
1, , ,| , , ~ [ ; ]t t t t t tD V M N m V R− −

−

Where

R G C Gt t
T

1 1
1
1 1 1 1, ,= −

−

And, β1 < 1 is a discount factor with a value subjectively 
selected to be close to 1. The constants a and b are introduced 
to accommodate trends in the evolution of  the likelihood 
variance since E(Vt|Dt−1) = art−1/bst−1.

The above model incorporates correlated inputs and can be 
extended to multiple discount factors as necessary (Ameen 
and Harrison, 1985; Ameen, 1992 for more elaboration 
on the choice of  the discount factor and the constants 
a and b). A sequential updating procedure is then obtained 
representing the evolution of  the low-frequency parameters 
with time.

The resulting forecasting distribution is as follows:

t t t -1 1
-1
t 1,tY |V ,D ,M N[ y ;V Q ]t~ 1,

^  (8)
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Where

y = F G m ,t 1,t 1,t 1,t -11,
^  (9)

T1,t 1,t 1,t1,tQ = +1.F R F  (10)
The posterior state distribution for time t is as follows:

1,t t t -1 t 1 1,t
-1
t 1,t|V ,D , y ,M N[ m ;V C ]θ ~  (11)

Where

mt=G1m1,t−1+A1,te1,t

C1,t=(I−A1,tF)R1,t

Moreover, the updated variance distribution is as follows:

t t
t tV D ~
r s|
2
,
2

Γ 



  (12)

Where

rt=art−1+1 and st=bst−1+et−1
2/Q1,t

Note that, all the above distributions that are conditional on 
Vt, their unconditional distributions can be found using the 
rules of  probability leading to t-distributions with appropriate 
parameter values.

Alternatively, Vt values can be replaced by their estimates 
keeping the distributions normal.

Now, given the joint likelihood for the high and low 
frequencies as:

Yt|θ1,t,θ2,t_N[F1,tθ1,t+F2,t θ2,t; V2,t], V2,t N[0; V2] (13)

Where the V2,t’s are all uncorrelated, the information in the 
Equation (6) and Equation (11) can be used to construct 
the posterior distribution for the high-frequency system 
parameter vector q2,t−1:

θ2,t−1|θ1,t−1, Dt−1, M ~ N[m2,t−1+Pt−1(θ1,t−1−m1,t−1); C2,t−1] (14)

Where m2,t−1=E{q2,t−1|M, Dt−1} and Pt−1 is a known m×n 
matrix similar to the usual regression coefficients and whose 
components are functions of  the adaptive factors.

The prior conditional distribution for q2,t is as follows:

2,t 1,t t -1 2 2,t -1 t -1
* 1,t 1 1,t -1 2,t| ,D ,M N[ G m +P ( - G m ); R ]θ θ θ~

 
(15)

Where P*t−1 is obtained from Pt−1 to reflect the added degree 
of  uncertainty due to the transition in time. For example, a 
direct calculation based on the normal discount Bayesian 
models setting of  Ameen and Harrison (1985) leads to 
P*t−1=δG2Pt−1G1

−1, where δ=(β2/β1)
1/2 and R2,t is obtained using 

the discount principle described earlier. The discount factor 
β2 is similar to β1 but smaller in magnitude to increase the 
adaptivity for the estimation of  high-frequency parameters.

Combining the Equation (13) and Equation (15) and using Bayes 
theorem, the updating conditional distribution of  q2,t is obtained.

q2,t|q1,t, Dt−1, yt, M~N[m2,t+Pt(q1,t−m1,t); C2,t] (16)

Where

-1
2,t

-1
2,t

-1
2C =R +V  (17)

m2,t=G2m2,t−1+A2,te2,t+PtA1,te1,t (18)

t t -1
*

2,t 2 t -1
*

2,t 1P = P - A F P - A F  (19)

And,

e2,t=yt−F1G1m1,t−1−F2G2m2,t−1 (20)

The forecast distribution is given by

t t -1 1 tY |D ,M N[ y ; H ]t~ 2,
^  (21)

Where

y = F G m + F G mt 1 1 1,t 2 2 2,t2 ,
^  (22)

And,

t 1 2 t -1
*

1,t 1 2 t -1
* T

2 2,t 2
T

2H =( F - F P )R ( F - F P ) + F R F +V  
 (23)
The general k steps forecast function is given by

t 1 1
k

1,t 2 2
k

2,tF (k) = F G m + F G m  (24)

With a forecasting variance of

t 1 2 t -1
*

1,t 1 2 t -1
* T

2 2,t 2
T

H (k) = ( F - F P (k))R (k)( F - F P (k) )
+F R (k)F + 22V  (25)

Where

Pt−1(k)=δkG2
kPt−1G1

−k, R1,t(k)=β1
−kG1

kC1,t−1 (G1
T)k and 

R2,t(k)=β2
−kG2

kC2,t(G1
T)k.
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In practice, G2 can be selected so that G2
k → 0 for large values 

of  k so that the limiting forecast function

t 2,t+k 1 1
k

1,t -1F (k) = y = F G m .^  (26)

3. LIMITING RESULTS

Given that, the eigenvalues of  β1G1 and β2G2 are outside the 
unit circle, it can be seen that (Ameen and Harrison, 1985)

[Ci,t, Ri,t, Ai,t, Qi,t]→ [Ci, Ri, Ai, Qi],i=1,2 (27)

Given a posterior to prior transition for Pt−1 so that P*t−1=δPt−1 
where δ≤1 is a known constant, we have Equation (28).

t
t t

t
i iP I A F P A F A FI=






∑δ δ( - ) - )
-

( -2 2 0
0

1

2 2 2 1  (28)

= -(I - (I - A F ) )(I - (I - A F ) ) A Ft
2 2

t
2 2

-1
2 1   (29)

→ -[(1- )I + A F ] A F2 2
-1

2 1   (30)

= -(I - A F
F A +1-

)A F /(1- )2 2

2 2
T 2

T
1


 

  (31)

To discuss the limiting predictor functions described here, 
three simple but rather popular model settings are considered.

3.1. The Steady State M2 and a Static Regression M1 
Submodel
This restr icts  the models to scalar  for ms with 
F1=F2=G1=G2=β1=1 and δ and β2 are as before.

Therefore, under M1,

1
0

11
,

-

- ,t

t

t i tm
t

y y= ∑ =  (32)

And,

2
2 2

2

1-
=1- , P = - ,A

1-
β

β
δβ

 (33)

It can also be seen which gives

2
2,t 2,t -1 1,t -1 1,t -12 2 t t

2

1-
y y= +(1- )( - ) - ( - )m m m m

(1- )t
β

β β
δβ  (34)

And, as t increases,

2,t 2,t -1 1,t -12 2 ty= +(1- )( - )m m mβ β  (35)

That is, the short-term departures are the exponentially 
weighted moving average (EWMA) of  the past departures 
of  the long-term predictions from the observed values.

The k-steps forecasting function is as follows:

t t+k 2,t+k t
k
2 2,tF (k) = y + m = y + m^   (36)

Clearly, as k increases, the k-steps forecast function 
approaches the mean value of  Y at time t.

3.2. The Steady State M1 and a Steady State M2 
Submodel
This restricts the models to scalar forms with F1=F2=G1=G2=1, 
and β1, δ, and β2 are as before.

Under this formulation, Ai=1−βi, i=1, 2 and P = −(1−β2)/
(1−δβ2).

Furthermore, under M1, the low-frequency state parameter 
is the EWMA of  the past observations:

1 1
0

1

1 1 1 01,

-

- ,( - )t

t
i
t i

tm y m= +∑    (37)

While the high-frequency parameter estimate is

2,t 2 2,t -1 2
1 2

2
t 1,t -1m = m +(1- )

-
1-

( y - m ).β β
β δβ

δβ
 (38)

The k-steps forecasting function is:

t 1,t+k 2,t+k 1,t
k
2 2,tF (k) = m +m = m + m  (39)

t 1,t(k) as kmF → → ∞  (40)
3.3. Linear Growth M1 and a Steady State M2 Submodel
This defines β1, β2, G2, and F2 as in example (i) and

1 1G = 1 1
0 1

,
F = 1 0 ,



















 (41)

1,t 1 1,t -1 1,t= + A .m G m e  (42)
With the limiting adaptive coefficients are as follows:

1
T

1
2

1
2

2 2A = [(1- ),(1- ) ], A =1- ,    (43)

And, also using the relation

t t -1
-1
1 2 1P = P G - (1- )Fλ β  (44)
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Where λ=β2δ, the limiting Pt can be found as

P =
1-
1- 1-

2β
λ

λ
λ

− +





1
1

 (45)

2,t 2,t -1 2 2,t 1,tm = m +(1- )e + Be  (46)

The limiting short-term systems parameter is then updated 
according to the departures from the estimated trend 
under M1.

Or

2,t 2 2,t -1 1,tm = m +(1+ B)e  (47)

Where

B=
(1- )(1- )

1-
(
(1+ )(1- )

1-
- -1)2 1 1

1
β β

λ
λ β

λ
β  (48)

The k-steps forecasting function is:

t 1
k
1 1,t 2,t+k 1

k
1 1,tF (k) = F G m +m F G m as k→ →∞  (49)

Furthermore, with a diminishing prior-posterior regression 
coefficients matrix Pt such that

t t -1 12= - (1- )P P Fλ β  (50)

2
t 1

1-
= -P F

1-
β
λ  (51)

Leading to a modification in the above recurrence relation 
with

2
12(1- )(1- )

B = -
1-

ββ
λ  (52)
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