Issues and Challenges Facing Low Latency in Tactile Internet

  • Tara I. Yahiya Department of Computer Science and Engineering, School of Science and Engineering, University of Kurdistan Hewlêr
  • Pinar Kirci Department of Engineering Sciences, Faculty of Engineering, Istanbul University -Cerrahpasa, Turkey
Keywords: Fifth-generation, Haptic, Mobile Edge Computing, Mobile Edge Computing, Tactile Internet


Tactile Internet is considered as the next step towards a revolutionary impact on the society, this is due to the introduction of different types of applications mainly the haptic ones that require strict Quality of Service guarantee especially in terms of latency. This would be a major challenge towards the design of new communication technologies and protocols in order to provide ultra-low latency. This article discusses the diverse technologies, communication protocols, and the necessary infrastructure to provide low latency based principally on the fifth generation (5G) of mobile network that is considered as the key enablers of the Tactile Internet. Furthermore, current research direction along with future challenges and open issues are discussed extensively.


Download data is not yet available.

Author Biography

Tara I. Yahiya, Department of Computer Science and Engineering, School of Science and Engineering, University of Kurdistan Hewlêr

Tara Ibrahim Ali Yahiya holds an HDR (Habilitation a diriger des recherches) which is a qualification for getting full professorship from the university of Paris Sud 11 (France), a PhD in mobile and wireless networks from the university of Paris 6 (Pierre & Marie Curie) and a MSc from the university of Marne-La-Vallee (Paris Est) and a BSc in computer science from the university of Mosul. After completing her PhD, she did her post-doctoral in the domain of telecommunication in Telecom Sud Paris (School of Engineering) and then she worked as associate professor in the university of Paris Sud 11 for six years before joining the university of Kurdistan. She taught in several higher education institutes just like the University of Salahhadin, the University of Creteil, Telecom Sud Paris, Paris Sud 11.


Aijaz, A. (2016). Towards 5G-enabled Tactile Internet: Radio Resource Allocation for Haptic Communications. Doha: IEEE Wireless Communications and Networking Conference Workshops. p. 145-150.

Aijaz, A., Dawy, Z., Pappas, N., Oteafy, S., Simsek, M., & Holland, O. (2018). Toward a tactile internet reference architecture: Vision and progress of the IEEE P1918.1 standard. IEEE Communications Standards Maganize, 54(9), 112-118.

Aijaz, A., Dohler, M., Aghvami, A. H., Friderikos, V., & Frodigh, M. (2017). Realizing the tactile internet: Haptic communications over next generation 5G cellular networks. IEEE Wireless Communications, 24(2), 82-89.

Al Osman, H., Eid, M., Iglesias, R., & El Saddik, A. (2007). Alphan: Application Layer Protocol for Haptic Networking. In: Haptic, Audio and Visual Environments and Games. 2007 IEEE International Workshop IEEE. p. 96-101.

Ali-Yahiya, T. (2018). Towards society revolution. UKH Journal of Science and Engineering, 2(2), 37-38. Amodu, O. A., & Othman, M. (2018). Machine-to-machine communication: An overview of opportunities. Computer Networks, 145, 255-276.

Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, C. K. A., & Zhang, J. C. (2014). What Will 5G Be? IEEE Journal on Selected Areas in Communications, 32(6), 1065-1082.

Antonakoglou, K., Xu, X., Steinbach, E., Mahmoodi, T., & Dohler, M. (2018). Toward haptic communications over the 5G tactile internet. IEEE Communications Surveys and Tutorials, 20(4), 3034-3059.

Ateya, A. A., Muthanna, A., Gudkova, I., Abuarqoub, A., Vybornova, A., & Koucheryavy, A. (2018). Development of intelligent core network for tactile internet and future smart systems. Journal of Sensor Actuator Networks, 7(1), 1.

Ateya, A. A., Vybornova, A., Kirichek, R., & Koucheryavy, A. (2017). Multilevel Cloud Based Tactile Internet System. Bongpyeong: 19th International Conference on Advanced Communication Technology. p. 105-110.

Berg, D. V. D., Glans, R., Koning, D. D., Kuipers, F. A., Lugtenburg, J., Polachan, K., Venkata, P. T., Singh, C., Turkovic, B., & Wijk, B. V. (2017). Challenges in haptic communications over the tactile internet. IEEE Access, 5, 23502-23518.

Bhardwaj, A., Dabeer, O., & Chaudhuri, S. (2013). Can we improve over Weber Sampling of Haptic Signals? 2013 Information Theory and Applications Workshop IEEE. p. 1-6.

Blanco, B., Fajardo, J. O., Giannoulakis, I., Kafetzakis, E., Peng, S., PérezRomero, J., Trajkovska, I., Khodashenas, P. S., Goratti, L., Paolino, M., & Sfakianakis, E. (2017). Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN. Computer Standards and Interfaces, 54(4), 216-228.

Bui, N., Cesana, M., Hosseini, S. A., Liao, Q., Malanchini, I., & Widmer, J. (2017). A survey of anticipatory mobile networking: Context-based classification, prediction methodologies, and optimization techniques. IEEE Communications Surveys Tutorials, 19(3), 1790-1821.

Cabrera, J. A., Schmoll, R., Nguyen, G. T., Pandi, S., & Fitzek, F. H. P. (2019). Softwarization and Network Coding in the Mobile Edge Cloud for the Tactile Internet. Proceedings of the IEEE.

Cen, Z., Mutka, M. W., Zhu, D., & Xi, N. (2005). Supermedia transport for teleoperations over overlay networks. In: Boutaba, R., Almeroth, K., Puigjaner, R., Shen, S., & Black, J. P., editors. Networking 2005. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 1409-1412.

Chen, S., & Zhao, J. (2014). The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Communications Magazine, 52(5), 36-43.

Clarke, S., Schillhuber, G., Zaeh, M. F., & Ulbrich, H. (2006) Telepresence Across Delayed Networks: A Combined Prediction and Compression Approach. In: Haptic Audio Visual Environments and their Applications. 2006 IEEE International Workshop IEEE. p. 171-175.

Costa-Requena, J., Santos, J. L., Ahokas, K., Premsankar, G., Luukkainen,S., Pérez, O. L., Itzazelaia, M. U., Ahmad, I., Liyanage, M., Ylianttila, M., & de Oca, E. M. (2015). SDN and NFV Integration in Generalized Mobile Network Architecture. Paris: European Conference on Networks and Communications. p. 154-158.

Eid, M., Cha, J., & El Saddik, A. (2011). Admux: An adaptive multiplexer for haptic audio visual data communication. IEEE Transactions on Instrumentation and Measurement, 60(1), 21-31.

El Saddik, A., Orozco, M., Eid, M., & Cha, J. (2011). Haptics Technology: Bringing Touch to Multimedia. New York: Springer-Verlag.

Gholipoor, N., Saeedi, H., & Mokari, N. (2018). Cross-Layer Resource Allocation for Mixed Tactile Internet and Traditional Data in SCMA Based Wireless Networks. Barcelona: IEEE Wireless Communications and Networking Conference Workshops. p. 356-361.

Giannoulakis, I., Kafetzakis, E., Xylouris, G., Gardikis, G., & Kourtis, A. (2014). On the Applications of Efficient NFV Management Towards 5G Networking. Akaslompolo: 1st International Conference on 5G for Ubiquitous Connectivity. p. 1-5.

Gokhale, V. Nair, J., & Chaudhuri, S. (2017). Teleoperation over a Shared Network: When Does it Work? 2017 IEEE International Symposium on Haptic, Audio and Visual Environments and Games, Abu Dhabi. p. 1-6.

Gokhale, V., Chaudhuri, S., & Dabeer, O. (2015). HoIP: A Point-topoint Haptic Data Communication Protocol and its Evaluation. 21st National Conference on Communications, Mumbai. p. 1-6.

Gokhale, V., Nair, J., & Chaudhuri, S. (2017). Congestion control for network-aware telehaptic communication. ACM Transactions on Multimedia Computing, Communications, and Applications, 13(2), 17.

Hou, Z., She, C., Li, Y., Quek T. Q. S., & Vucetic, B. (2018). Burstiness Aware Bandwidth Reservation for Uplink Transmission in Tactile Internet. Kansas City, MO: IEEE International Conference on Communications Workshops. p. 1-6.

Khodashenas, P. S., Aznar, J., Legarrea, A., Ruiz, C., Siddiqui, M.S., Escalona, E., & Figuerola, S. (2016). 5G Network Challenges and Realization Insights. Trento; 18th International Conference on Transparent Optical Networks. p. 1-4.

Maier, M., Ebrahimzadeh, A., & Chowdhury, M. (2018). The tactile internet: Automation or augmentation of the human? IEEE Access, 6, 41607-41618.

Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). Mobile Edge Computing: Survey and Research Outlook. IEEE Communications Surveys. Available from: abs/1701.01090. [Last accessed on 2018 Nov 12].

Marshall, A., Yap, K. M., & Yu, W. (2008). Providing QoS for networked peers in distributed haptic virtual environments. Advances in Multimedia, 2008, 14.

Matias, J., Garay, J., Toledo, N., Unzilla, J., & Jacob, E. (2015). Toward an SDN-enabled NFV architecture. IEEE Communications Magazine, 53(4), 187-193.

Nasir, Q., & Khalil, E. (2012). Perception Based Adaptive Haptic Communication Protocol (Pahcp). In: Computer Systems and Industrial Informatics. 2012 International Conference IEEE. p. 1-6.

Parvez, I., Rahmati, A., Guvenc, I., Sarwat A. I., & Dai, H. (2018). A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Communications Surveys and Tutorials, 20(4), 3098-3130.

Ravindran, R., Chakraborti, A., Amin, S. O., Azgin, A., & Wang, G. (2017). 5G-ICN: Delivering ICN services over 5G using network slicing. IEEE Communications Magazine, 55(5), 101-107.

Rimal, B. P., Dung Pham V., & Maier, M. (2017). Mobile edge computing empowered fiber-wireless access networks in the 5G era. IEEE Communications Magazine, 55(2), 192-200.

Rost, P., Mannweiler, C., Michalopoulos, D. S., Sartori, C., Sciancalepore, V., Sastry, N., Holland, O., Tayade, S., Han, B., Bega, D., Aziz, D., & Bakker, H. (2017). Network slicing to enable scalability and flexibility in 5G mobile networks. IEEE Communications Magazine, 55(5), 72-79.

Sachs, J., Andersson, L. A. A., Araújo, J., Curescu, C., Lundsjö, J., Rune, G., Steinbach, E., & Wikström, G. (2019). Adaptive 5G LowLatency Communication for Tactile Internet Services. Proceedings of the IEEE.

Sakr, N., Georganas, N. D., & Zhao, J. (2011). Human perception-based data reduction for haptic communication in six-dof telepresence systems. IEEE Transactions on Instrumentation and Measurement, 60(11), 3534-3546.

Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., Tufvesson, F., Benjebbour, A., & Wunder, G. (2017). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201-1221.

She, C., & Yang, C. (2016). Ensuring the Quality-of-Service of Tactile Internet. Nanjing: IEEE 83rd Vehicular Technology Conference. p. 1-5.

She, C., Yang, C., & Quek, T. Q. S. (2016). Cross-Layer Transmission Design for Tactile Internet. Washington, DC: IEEE Global Communications Conference. p. 1-6.

She, C., Yang, C., & Quek, T. Q. S. (2016). Uplink Transmission Design with Massive Machine Type Devices in Tactile Internet. Washington, DC: IEEE Globecom Workshops. p. 1-6.

Skorin-Kapov, L., Varela, M., Hoßfeld, T., & Chen, K. T. (2018). A survey of emerging concepts and challenges for qoe management of multimedia services. ACM Transactions on Multimedia Computing, Communications, and Applications, 14(2), 1-29.

Swamy, V. N., Rigge, P., Ranade, G., Sahai, A., & Nikolić, B. (2016). Network Coding for High-Reliability Low-Latency Wireless Control. Doha: IEEE Wireless Communications and Networking Conference. p. 1-7.

Szabo, D., Gulyas, A., Fitzek, F. H. P., & Lucani, D. E. (2015). Towards the Tactile Internet: Decreasing Communication Latency with Network Coding and Software Defined Networking. Budapest, Hungary: Proceedings of European Wireless, 21th European Wireless Conference. p. 1-6.

Technical Specification. (2017). System Architecture for the 5G System, Under Change Control 3GPP. Technical Specification, No. 23.501.

Technical Specification. (2017). Technical Specification Group Services and System Aspects: Service Requirements for the 5G System, 3GPP. Technical Specification, Document, No. TS 22.261.

Tran, T. X., Hajisami, A., Pandey, P., & Pompili, D. (2017). Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Communications Magazine, 55(4), 54-61.

Wirz, R., Ferre, M., Marn, R., Barrio, J., Claver, J., & Ortego, J. (2008). Efficient transport protocol for networked haptics applications. In: Ferre, M., editor. Haptics: Perception, Devices and Scenarios. Vol. 5024. Berlin Heidelberg: Lecture Notes in Computer Science, Springer. p. 3-12.

Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138-145.

Zhang, Q., Liu, J., & Zhao, G. (2018). Towards 5G Enabled Tactile Robotic Telesurgery. Available from: abs/1803.03586. [Last accessed on 2019 Dec 09].
How to Cite
Yahiya, T., & Kirci, P. (2019, June 20). Issues and Challenges Facing Low Latency in Tactile Internet. UKH Journal of Science and Engineering, 3(1), 47-58.
Review Articles