Applicability of Nanoparticle Flooding Process in a Carbonate Rock of Kurdistan Region: Experimental Investigation of Interfacial Tension and Wettability

Authors

  • Ararat Rahimy Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region, Iraq http://orcid.org/0000-0003-2497-0477
  • Maha Raouf Hamoudi Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region, Iraq http://orcid.org/0000-0003-4127-3470
  • Akram Hamoodi Al-Hiti Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region, Iraq
  • Ramyar Suramairy Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region, Iraq http://orcid.org/0000-0002-9286-9189

DOI:

https://doi.org/10.25079/ukhjse.v6n1y2022.pp21-32

Keywords:

Interfacial Tension, Wettability, Carbonate Reservoirs, Nano-Fluid Flooding, Enhanced Oil Recovery.

Abstract

Enhanced oil recovery (EOR) has long proven to be a good method to mobilize the residual oil that is by passed and capillary trapped by secondary recovery methods. Chemical EOR methods enhance the microscopic and macroscopic efficiency, and ultimately the overall oil recovery is improved. However, the adsorption rate of the surfactant, low resistance to high temperature and salinity are some of the factors that would turn chemical flooding impractical and uneconomic in many cases. Lately, the application of nanotechnology in enhanced oil recovery has showcased some good and prolific results in terms of incremental oil recovery. In this study, the applicability of Nanoparticle flooding in carbonate rocks of Pilaspi formation was probed through a series of tests such as thin section analysis, x-ray diffraction, x-ray fluorescence, interfacial tension and contact angle measurements. The results showed that the composition of the carbonate rocks is predominantly calcite (CaCO3) with minor traces of quartz and dolomite. From the interfacial tension (IFT) measurements, it was figured out that the silica and alumina Nanofluids lowered the IFT by 27% and 42% with the light oil, and 43% and 49% with the heavy oil, respectively. The contact angle measurements revealed that the Alumina Nano-fluid at 0.25 wt. % reduced the contact angle on the surface of the light and heavy oil aged thin sections from 169 and 115 to nearly 119 and 78. On the other hand, the silica nanoparticle at 0.25 wt. % reduced the contact angles on both thin section types to around 129 and 80, respectively.

Downloads

Download data is not yet available.

Author Biographies

  • Ararat Rahimy, Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region, Iraq

    Ararat Rahimy: is an assistant lecturer at the Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region, Iraq.

  • Maha Raouf Hamoudi, Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region, Iraq

    Dr. Maha has obtained her PhD in Baghdad and is currently teaching as an Assistant professor at UKH. 

  • Akram Hamoodi Al-Hiti, Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region, Iraq

    Dr. Akram holds a PhD degree in Petroleum Engineering and is currently teaching at UKh as a Professor. 

  • Ramyar Suramairy, Department of Natural Resources Engineering and Management, School of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region, Iraq

    Mr. Ramyar holds Msc from UK and is currently teaching at UKH as a Lecturer. 

References

Bayat, A.E., Junin, R., Samsuri, A., Piroozian, A., and Hokmabadi, M. (2014). Impact of Metal Oxide Nanoparticles on Enhanced Oil Recovery from Limestone Media at Several Temperatures. Energy Fuels, 28(10), 6255–6266. DOI: https://doi.org/10.1021/ef5013616.
Donaldson, E.C., Chilingarian, G.V., Yen, T.F. (Ed.) (1985). Enhanced Oil Recovery I, Fundamentals and Analyses. Elsevier Science.
El-Diasty, A.I., Ali, A.M. (September 2015). Understanding the Mechanism of Nanoparticles Applications in Enhanced Oil Recovery. SPE North Africa Technical Conference and Exhibition, Cairo, Egypt.
ESSRI (2013). ArcGIS REST Services Directory. World Imagery. Retrieved on 20 June 2020 from https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/0.
Hendraningrat, L., Torsæter, O. (2014). Effects of the Initial Rock Wettability on Silica-Based Nanofluid-Enhanced Oil Recovery Processes at Reservoir Temperatures. Energy Fuels, 28(10), 6228–6241. DOI: https://doi.org/10.1021/ef5014049.
Mashat, A., Abdel-Fattah, A., and Gizzatov, A. (June 2018). Nanosurfactant: A Novel Nanoparticle-Based EOR Approach. SPE Europec featured at 80th EAGE Conference and Exhibition, Copenhagen, Denmark. DOI: https://doi.org/10.2118/190861-MS.
Nourafkan, E., Hu, Z., and Wen, D. (2018). Nanoparticle-enabled delivery of surfactants in porous media. Journal of Colloid and Interface Science, 519, 44-57. DOI: https://doi.org/10.1016/j.jcis.2018.02.032.
Ogolo, N.A., Olafuyi, O.A., Onyekonwu, M.O. (April 2012). Enhnaced Oil recovery using Nanoaparticles. SPE Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia. DOI: https://doi.org/10.2118/160847-MS.
Onyekonwu, M.O. and Ogolo, N.A. (July 2010). Investigating the Use of Nanoparticles in Enhancing Oil Recovery. Nigeria Annual International Conference and Exhibition, Tinapa - Calabar, Nigeria. DOI: https://doi.org/10.2118/140744-MS.
Marwan, Y.R. and Nageh, K.A. (2019). Impact of nanotechnology on enhanced oil recovery: A mini-review. Industrial & Engineering Chemistry Research, 58 (36), 16287-16295. DOI: 10.1021/acs.iecr.9b03693.
Roustaei, A., Moghadesi, J., Iran, A., Bagherzade, H., and Shahrabadi, A. (June 2012). An Experimental Investigation of Polysilicon Nanoparticles’ Recovery Efficiencies through Changes in Interfacial Tension and Wettability Alteration. SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands. DOI: https://doi.org/10.2118/156976-MS.
Shahrabadi, A., Bagherzadeh, H., Roostaie, A., and Golghanddashti, H. (June 2012). Experimental Investigation of HLP Nanofluid Potential to Enhance Oil Recovery: A Mechanistic Approach. SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands. DOI: https://doi.org/10.2118/156642-MS.
Suramairy, R., Rahimy, A., Rozjbeyani, H., and Delshad, M. (2021). Investigating the Impact of a Walnut-Extracted Surfactant on Oil-Water 2 IFT Reduction and Wettability Alteration in Carbonate Rocks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. DOI: 10.1080/15567036.2021.1909677.
Zaid, H. M., Ahmad Latiff, N. R., and Yahya, N. (2014). The Effect of Zinc Oxide and Aluminum Oxide Nanoparticles on Interfacial Tension and Viscosity of Nanofluids for Enhanced Oil Recovery. Advanced Materials Research, 1024, 56–59. DOI: https://doi.org/10.4028/www.scientific.net/amr.1024.56.

Downloads

Published

2022-06-30

Issue

Section

Research Articles

How to Cite

Applicability of Nanoparticle Flooding Process in a Carbonate Rock of Kurdistan Region: Experimental Investigation of Interfacial Tension and Wettability. (2022). UKH Journal of Science and Engineering, 6(1), 21-32. https://doi.org/10.25079/ukhjse.v6n1y2022.pp21-32

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>