Parameters Variation to Estimate Performance Characteristics of 3-Phase Asynchronous Motor

Authors

  • Velar Hikmat Elias Department of Electrical Engineering, College of Engineering, Salahaddin University, Erbil, Kurdistan Region, Iraq
  • Wafeeq Shaia Hanna Department of Electrical Engineering, College of Engineering, Salahaddin University, Erbil, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25079/ukhjse.v7n1y2023.pp1-10

Keywords:

SimscopeTM, 3-Phase Asynchronous Motor, Parameters Variation, Simulation Model, Torque and Current, Efficiency

Abstract

The 3-phase asynchronous squirrel cage motors (SCIM) are main competitor machines placed instead of other motors in the commercial and industrial fields. The stator and rotor material selection and construction topology influence the electrical machine design. The results illustrated with the motor of a 15 KW, variable controlled speed, for the constant frequency of 50 Hz or 60 Hz. The motor parameters created inside the simulation model must be matched with the value of a standard parameter for SCIM to achieve a high dynamic response. This work examines the effect of the parameters variation for synchronous motor on the performance characteristics at starting point and at a load change for different time and speed regions. Changing of the rotor power is taken into consideration, this occurs with dynamic change of the hydraulic pump load from the valve.

In the industrial applications, production, and manufacturing, till present there are still struggles to find the most holistic environment of the SCIM to achieve its efficiency at the lowest cost and same time control the motor performance, so we predicted the method of reducing the most effective motor parameters to improve the efficiency.

The offline method used the SCIM parameters to calculate the time-varying current, torque, and rotor speed. The results illustrated that this method was fully consistent with the experiment tests and the standard theoretical values.

A MATLAB program is used to simulate this study. The simulation model proved the feasibility of the proposed method with encouraging performance.

Downloads

Download data is not yet available.

References

Ahmadi Jirdehi, M. & Rezaei, A. (2016). Parameters estimation of squirrel-cage induction motors using ANN and ANFIS. Alexandria Engineering Journal, 55. DOI:10.1016/j.aej.2016.01.026
Ameen, H. & Aula, F. (2020). Performance Analysis of WRIM Drive System Operating under Distorted and Unbalanced Supply: A Survey. 32.
Auinger, H. (2001). Efficiency of electric motors under practical conditions. Power Engineering Journal, 15, 163-167. DOI:10.1049/pe:20010309
Barta, J., Ondrusek, C., Losak, P. & Vlach, R. (2016). Design of high-speed induction machine for the 6 kW, 120 000 rpm helium turbo-circulator.
Elkholy, M. M., El-Hay, E. A. & El-Fergany, A. A. (2022). Synergy of electrostatic discharge optimizer and experimental verification for parameters estimation of three phase induction motors. Engineering Science and Technology, an International Journal, 31, 101067. DOI:https://doi.org/10.1016/j.jestch.2021.09.013
Erdogan, N. U. H., Henao, H. & Grisel, R. (2015). An improved methodology for dynamic modelling and simulation of electromechanically coupled drive systems: An experimental validation. Sadhana, 40(7), 2021-2043. DOI:10.1007/s12046-015-0431-1
Fitzgerald, A. E., Kingsley, C. & Umans, S. D. (2003). Electric machinery (6th ed.). Boston, Mass.: McGraw-Hill.
Gieras, J. & Saari, J. (2012). Performance Calculation for a High-Speed Solid-Rotor Induction Motor. Industrial Electronics, IEEE Transactions on, 59, 2689-2700. DOI:10.1109/TIE.2011.2160516
Ikeda, M., Sakabe, S. & Higashi, K. (1990). Experimental study of high speed induction motor varying rotor core construction. IEEE Transactions on Energy Conversion, 5(1), 98-103. DOI:10.1109/60.50819
Kishor, A. & Chakarbarty, C. (2021). Task Offloading in Fog Computing for Using Smart Ant Colony Optimization. Wireless Personal Communications, 127, 1-22. DOI:10.1007/s11277-021-08714-7
Kundur, P. S. & Malik, O. P. (2022). Power System Stability and Control (2nd Edition ed.). New York: McGraw-Hill Education.
Lindsay, J. F. & Barton, T. H. (1973). Parameter Identification for Squirrel Cage Induction Machines. Power Apparatus and Systems, IEEE Transactions on, PAS-92, 1287-1291. DOI:10.1109/TPAS.1973.293813
Liu, L., Zhang, K. & Zhang, S. (2009). Optimal Efficiency Control of Induction Motor with Core Loss.
Mohamed, H., Egyptian, S. & Metro, C. (2016). Effect of the Parameters Variation for Induction Motor on its Performance Characteristics with Field Oriented Control Compared to Scalar Control.
Moraes, R. M., Ribeiro, L., Jacobina, C. B. & Lima, A. (2003). Parameter estimation of induction machines by using its steady-state model and transfer function.
Mujal-Rosas, R. & Orrit-Prat, J. (2011). General Analysis of the Three-Phase Asynchronous Motor With Spiral Sheet Rotor: Operation, Parameters, and Characteristic Values. Industrial Electronics, IEEE Transactions on, 58, 1799-1811. DOI:10.1109/TIE.2010.2051397
Razali, R., Abdalla, A., Ghoni, R. & Chinthakunta, V. (2012). Improving squirrel cage induction motor efficiency: Technical review. International Journal of Physical Sciences, 7, 1129-1140. DOI:10.5897/IJPS11.395
Reed, D. M., Hofmann, H. F. & Sun, J. (2016). Offline Identification of Induction Machine Parameters With Core Loss Estimation Using the Stator Current Locus. IEEE Transactions on Energy Conversion, 31, 1549-1558.
Saied, B. & Mohammed, L. (2016). Minimum Switching Losses Evaluation for PMSM Drive based on Modified Space Vector PWM. 28, 629-636. DOI:10.21271/zjpas.v28i2.877
Say, M. G. (1976). Alternating current machines (4th ed.). London: Pitman.
Shanab, M. (2021). Parameters Identification for Three Groups of Squirrel Induction Motor. International Research Journal of Multidisciplinary Technovation, 1-7. DOI:10.54392/irjmt2211
Sharma, D. (2016). Model Predictive Control of Induction Motor with Delay Time Compensation: Matlab simulation.
Stephan, J., Bodson, M. & Chiasson, J. (1994). Realtime Estimation of the Parameters and Fluxes of Induction Motors. Industry Applications, IEEE Transactions on, 30, 746-759. DOI:10.1109/28.293725
Tu, X., Dessaint, L.-A., Champagne, R. & Al-Haddad, K. (2008). Transient Modeling of Squirrel-Cage Induction Machine Considering Air-Gap Flux Saturation Harmonics. Industrial Electronics, IEEE Transactions on, 55, 2798-2809. DOI:10.1109/TIE.2008.925644
Uzhegov, N., Kurvinen, E., Nerg, J., Pyrhönen, J., Sopanen, J. T. & Shirinskii, S. (2016). Multidisciplinary Design Process of a 6-Slot 2-Pole High-Speed Permanent-Magnet Synchronous Machine. IEEE Transactions on Industrial Electronics, 63(2), 784-795. DOI:10.1109/TIE.2015.2477797
Wildi, T. (2006). Electrical machines drives and power systems (6th edition).
Wu, R.-C., Tseng, Y.-W. & Chen, C.-Y. (2018). Estimating Parameters of the Induction Machine by the Polynomial Regression. Applied Sciences, 8, 1073. DOI:10.3390/app8071073
Yetgin, A., Canakoglu, A., Bekiroğlu, K. & Partal, S. (2005). Optimum Design and Performance Analysis of Three-Phase Induction Motor.
Zhou, H. & Wang, F. (2007). Comparative study on high speed induction machine with different rotor structures.

Downloads

Published

2023-08-28

Issue

Section

Research Articles

How to Cite

Parameters Variation to Estimate Performance Characteristics of 3-Phase Asynchronous Motor. (2023). UKH Journal of Science and Engineering, 7(1), 1-10. https://doi.org/10.25079/ukhjse.v7n1y2023.pp1-10

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>