Stagnation Point Heat Flow and Mass Transfer in a Casson Nanofluid with Viscous Dissipation and Inclined Magnetic Field

Authors

  • Wasiu Toyin Akaje Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria
  • Olajuwon B. I Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria

DOI:

https://doi.org/10.25079/ukhjse.v5n1y2021.pp38-49

Keywords:

Magnetic Field, Casson Nanofluid, Stagnation Point, Viscous dissipation.

Abstract

Influence of slip and inclined magnetic field on stagnation-point flow with chemical reaction are studied. Implementation of the similarity transformations, transformed the fluid non-linear ordinary differential equations and numerical computation is performed to solve those equations using Spectral Collocation Method. Various pertinent parameters on fluid flow, temperature and concentration distributions of the Casson nanofluid flow as well as the local skin friction coefficient, local Nusselt number, and Sherwood number are graphically displayed. The results indicate that thermophoresis parameter N_t enhanced the temperature and nanoparticle concentration profiles, because a rise in thermophoresis parameter enhances the thermophoresis force within the flow regime. Values of both local Nusselt and Sherwood numbers are enhanced with an increase in Hartman number (magnetic field parameter). The present results are compared with previously reported ones and are found to be in excellent agreement.

Downloads

Download data is not yet available.

References

Afify, A. (2017). The influence of slip boundary condition on Casson nanofluid flow over a stretching sheet in the presence of viscous dissipation and chemical reaction. Mathematical Problems in Engineering, 2017, 1-12. doi: https://doi.org/10.1155/2017/3804751
Alsedais, N. (2017). Heat Generation and Radiation Effects on MHD Casson Fluid Flow Over a Stretching Surface Through Porous Medium. European Journal of Advances in Engineering and Technology, 4(11), 850-857.
Awais, M., Hayat, T., Irum, S., & Alsaedi, A. (2015). Heat Generation/Absorption Effects in a Boundary Layer Stretched Flow of Maxwell Nanofluid: Analytic and Numeric Solutions. PLOS ONE, 10(6). doi: https://doi.org/10.1371/journal.pone.0129814
Bhattacharyya, K. & Layek, G. (2010). Chemically Reactive Solute Distribution in Mhd Boundary Layer Flow Over a Permeable Stretching Sheet with Suction or Blowing. Chemical Engineering Communications, 197(12), 1527-1540, doi: 10.1080/00986445.2010.485012
Choi, S.U. S. & Eastman J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the ASME International Mechanical Engineering Congress and Exposition. 66.
Crane, L. J. (1970). Flow past a stretching plate. Journal of Applied Mathematics and Physics (ZAMP) 21, 645–647. doi: https://doi.org/10.1007/BF01587695
Fang, T., Zhang, J., & Yao, S. (2009). Slip MHD viscous flow over a stretching sheet – An exact solution. Communications in Nonlinear Science and Numerical Simulation, 14(11), 3731-3737. doi: https://doi.org/10.1016/j.cnsns.2009.02.012
Haroun, N. A.H., Mondal, S., & Sibanda, P. (2015). Unsteady Natural Convective Boundary-layer Flow of MHD Nanofluid over a Stretching Surfaces with Chemical Reaction Using the Spectral Relaxation Method: A Revised Model. Procedia Engineering, 127, 18-24. doi: https://doi.org/10.1016/j.proeng.2015.11.317
Kumar, P. S., & Gangadhar, K. (2015). Effect of chemical reaction on slip flow of MHD Casson fluid over a stretching sheet with heat and mass transfer. Advances in Applied Science Research, 6(8), 205-223.
Mahapatra, T.R. & Gupta, A.S. (2001). Magnetohydrodynamic stagnation-point flow towards a stretching sheet. Acta Mechanica, 152, 191–196. doi: https://doi.org/10.1007/BF01176953
Meraj, M. & Junaid, K. (2015). Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects. AIP Advances. 5. doi: 10.1063/1.4927449
Pavlov, K. B. (1974). Magnetohydrodynamic Flow of an Incompressible Viscous Fluid Caused by the Deformation of a Plane Surface. Magnitnaya Gidrodinamika, 10(4), 146-147.
Reddy C, S., Naikoti, K., & Rashidi, M. M. (2017). MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity. Transactions of A. Razmadze Mathematical Institute, 171(2), 195—211. doi: https://doi.org/10.1016/j.trmi.2017.02.004
Reddy, J.V. R., Sugunamma, V., Sandeep, N., & Sulochana, C. (2016). Influence of chemical reaction, radiation and rotation on MHD nanofluid flow past a permeable flat plate in porous medium. Journal of the Nigerian Mathematical Society, 35(1), 48-65. doi: https://doi.org/10.1016/j.jnnms.2015.08.004
Shen, J., Tang, T., & Wang, L-L. (2011). Spectral Methods: Algorithms, Analysis, and Applications. Berlin, Heidelberg: Springer. doi: https://doi.org/10.1007/978-3-540-71041-7
Sun, Y-S., Ma, J., & Li, B-W. (2012). Chebyshev Collocation Spectral Method for Three-Dimensional Transient Coupled Radiative–Conductive Heat Transfer. Journal of Heat Transfer, 134(9). doi: https://doi.org/10.1115/1.4006596
Zaimi, K. & Ishak, A. (2016). Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects. Mathematics, 4(2), 27. doi: https://doi.org/10.3390/math4020027
Rao, M. E.& Sreenadh, S. (2017). MHD Flow of a Casson Fluid over an Exponentially Inclined Permeable Stretching Surface with Thermal Radiation, Viscous Dissipation and Chemical Reaction. Global Journal of Pure and Applied Mathematics, 13(10), 7529-7548.
Ishak, A., Jafar, K., Nazar, R., & Pop, I. (2009). MHD stagnation point flow towards a stretching sheet. Physica A: Statistical Mechanics and its Applications, 388(17), 3377-3383.

Downloads

Published

2021-06-30

Issue

Section

Research Articles

How to Cite

Stagnation Point Heat Flow and Mass Transfer in a Casson Nanofluid with Viscous Dissipation and Inclined Magnetic Field. (2021). UKH Journal of Science and Engineering, 5(1), 38-49. https://doi.org/10.25079/ukhjse.v5n1y2021.pp38-49

Most read articles by the same author(s)

<< < 3 4 5 6 7 8 9 10 11 > >>